Internet de las plantas: comunicación a través de la red micorrízica

Contenido principal del artículo

Ana Lucía Castro-Delgado
Stephanie Elizondo-Mesén
Yendri Valladares-Cruz
William Rivera-Méndez

Resumen

Los hongos micorrícicos se clasifican como ectomicorrizas (EM) y endomicorrizas, que incluyen micorrizas arbusculares (AM). Colonizan más del 80% de las raíces de las plantas terrestres, proporcionando nutrientes del suelo y formando una red de hifas llamada internet de las plantas (wood wide web). En esta revisión se describen las interacciones en las que están involucradas las redes de micorrizas. Desde un punto de vista práctico, las EM pueden ser más beneficiosa que la AM para el desarrollo de las plantas y la relación entre hongos y plantas está condicionada por factores externos. La investigación también mostró que el micelio puede transferir una amplia variedad de compuestos y señales entre las plantas, que pueden modificar su comportamiento para proteger la red en su conjunto. La transferencia de carbono es una herramienta importante para lograrlo y puede promover la regeneración de los bosques. Estos hallazgos enfatizan la complejidad de las relaciones en los bosques y la importancia de estudiar su dinámica para garantizar su conservación.

Detalles del artículo

Cómo citar
Castro-Delgado, A. L., Elizondo-Mesén, S. ., Valladares-Cruz, Y., & Rivera-Méndez, W. (2020). Internet de las plantas: comunicación a través de la red micorrízica. Revista Tecnología En Marcha, 33(4), Pág. 114–125. https://doi.org/10.18845/tm.v33i4.4601
Sección
Artículo científico

Citas

M. A. Selosse, y F. Rousset, “The plant-fungal marketplace,” Science, vol. 333, pp. 828-829, 2011. doi:10.1126/science.1210722

K. O. Reinhart, G. W. Wilson, y M. J. Rinella, “Predicting plant responses to mycorrhizae: integrating evo-lutionary history and plant traits,” Ecology Letters, vol. 15, pp. 689-695, 2012. doi.org/10.1111/j.1461-0248.2012.01786.x

O. Alizadeh, “Mycorrhizal symbiosis,” Advanced Studies in Biology, vol. 6, pp. 273-281, 2011.

P. Bonfante, y A. Genre, “Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbio-sis,” Nature communications, vol. 1, pp. 82-86, 2010. doi:10.1038/ncomms1046

M. G. Van Der Heijden, y T. R. Horton, “Socialism in soil? The importance of mycorrhizal fungal networks forfacilitation in natural ecosystems,” Journal of Ecology, vol. 97, pp. 1139-1150, 2009. doi.org/10.1111/j.1365-2745.2009.01570.x

A. Corrales, S. A. Mangan, B. L. Turner, y J. W. Dalling, “An ectomycorrhizal nitrogen economy facilitates mono-dominance in a neotropical forest,” Ecology Letters, vol. 19, pp. 383-392, 2016. doi.org/10.1111/ele.12570

E. Laliberté, H. Lambers, T. I. Burgess, y S. J. Wright, “Phosphorus limitation, soil‐borne pathogens and thecoexistence of plant species in hyperdiverse forests and shrublands,” New Phytologist, vol. 206, pp. 507-521,2015. doi: 10.1111/nph.13203

J. A. Bennett, H. Maherali, K.O. Reinhart, Y. Lekberg, M. M. Hart, y J. Klironomos, “ Plant-soil feedbacks andmycorrhizal type influence temperate forest population dynamics,” Science, vol. 355, pp. 181-184, 2017.doi:10.1126/science.aai8212

S. E. Smith, y D. J. Read, “The symbionts forming arbuscular mycorrhizas,” Mycorrhizal symbiosis, vol. 2, pp.13-41, 2008.

A. Corrêa, J. Gurevitch, M. A. Martins-Loução, y C. Cruz, “C allocation to the fungus is not a cost to the plant in ectomycorrhizae,” Oikos, vol. 121, pp. 449-463, 2012. doi.org/10.1111/j.1600-0706.2011.19406.x

M. Archetti, y I. Scheuring, “Trading public goods stabilizes interspecific mutualism,” Journal of theoretical biology, vol. 318, pp. 58-67, 2013. doi:10.1016/j.jtbi.2012.10.022

T. M. Fayle, D. P. Edwards, E. C. Turner, A. J. Dumbrell, P. Eggleton, y W. A. Foster, “Public goods, public services and by-product mutualism in an ant-fern symbiosis,” Oikos, vol. 121, no. 8, pp. 1279-1286, 2011. doi:10.1111/j.1600-0706.2011.20062.x

N. C. Jhonson, “Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales,” New Phytologist, vol. 185, no. 3, pp. 631-647, 2010. doi:10.1111/j.1469-8137.2009.03110.x

N. C. Johnson, G. W. Wilson, M. A. Bowker, J. A. Wilson, y R. M. Miller, “Resource limitation is a driver of local adaptation in mycorrhizal symbioses,” Proceedings of the National Academy of Science, vol. 107, no. 5, pp. 2093-2098, 2010. doi:10.1073/pnas.0906710107

Y. Lekberg, y R. T. Koide, “Integrating physiological, community and evolutionary perspectives on the arbus- cular mycorrhizal symbiosis,” Botany, vol. 92, no. 4, pp. 241-251, 2013. doi:10.1139/cjb-2013-0182

K. J. Field, J. R. Leake, S. Tille, K. E. Allinson, W. R. Rimington, M. I. Bidartondo, D. J. Beerling, y D. D.Cameron, “From mycoheterotrophy to mutualism: mycorrhizal specificity and functioning in Ophioglossum vulgatum sporophytes,” New Phytologist, vol. 205, no. 4, pp. 1492-1502, 2015. doi:10.1111/nph.13263

M. A. Gorzelak, A. K. Asay, B. J. Pickles, y S. W. Simard, “Inter-plant communication through mycorrhizal net-works mediates complex adaptive behaviour in plant communities,” AoB PLANTS, vol. 7, 2015. doi:10.1093/aobpla/plv050

N. A. Hynson, S. Mambelli, A. S. Amend, y T. E. Dawson, “Measuring carbon gains from fungal networks in understory plants from the tribe Pyroleae (Ericaceae): a field manipulation and stable isotope approach,” Oecologia, vol. 169, no. 2, pp. 307-317, 2011. doi:10.1007/s00442-011-2198-3

G. L. W. Perry, N. J. Enright, B. P. Miller, y B. B. Lamont, “Spatial patterns in species-rich sclerophyll shrublands of southwestern Australia,” Journal of Vegetation Science, vol. 19, no. 5, pp. 705-716, 2008. doi:10.3170/2008- 8-18441

E. T. Kiers, M. Duhamel, Y. Beesetty, J. A. Mensah, O. Franken, E. Verbruggen, C. R. Fellbaum, G. A. Kowalchuk, M. M. Hart, A. Bago, T. M. Palmer, S. A. West, P. Vandenkoornhuyse, J. Jansa, y H. Bucking, “Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis,” Science, vol. 333, no. 6044, pp. 880- 882, 2011. doi:10.1126/science.1208473

F. P. Teste, S. W. Simard, D. M. Durall, R. D. Guy, y S. M. Berch, “Net carbon transfer between Pseudotsuga menziesii var. glauca seedlings in the field is influenced by soil disturbance,” Journal of Ecology, vol. 98, no. 2, pp. 429-439, 2010. doi:10.1111/j.1365-2745.2009.01624.x

K. J. Beiler, S. W. Simard, y D. M. Durall, “ Topology of tree.mycorrhizal fungus interaction networks in xeric and mesic Douglas-fir forests,” Journal of Ecology, vol. 103, no. 3, pp. 616-628, 2015. doi:10.1111/1365- 2745.12387

M. A. Bingham, y S. W. Simard, “Do mycorrhizal network benefits to survival and growth of interior Douglas-

fir seedlings increase with soil moisture stress?,” Ecology and evolution, vol. 1, no. 3, pp. 306-316, 2011. doi:10.1002/ece3.24

Z. Babikova, L. Gilbert, T. J. A. Bruce, M. Birkett, J. C. Caulfield, C. Woodcock, J. A. Pickett, y D. Johnson, “Underground signals carried throught common mycelial networks warn neighbouring plants of aphid attack,” Ecology Letters, vol. 16, no. 7, pp. 835-843, 2013. doi:10.1111/ele.12115

A. L. File, J. Klironomos, H. Maherali, y S. A. Dudley, “Plant kin recognition enhances abundance of symbiotic microbial partner,” PLos One, vol. 7, no. 9, 2012. doi:10.1371/journal.pone.0045648

M. Semchenko, S. Saar, y A. Lepik, “Plant root exudates mediate neighbour recognition and trigger complex behavioural changes,” New Phytologist, vol. 204, no. 3, pp. 631-637, 2014. doi:10.1111/nph.12930

B. J. Pickles, R. Wilhelm, A. K. Asay, A. S. Hahn, S. W. Simard, y W. W. Mohn, “Transfer of 13C between paired Douglas-fir seedlings reveals plant kinship effects and uptake of exudates by ectomycorrhizas,” New Phytologist, vol. 214, no. 1, pp. 400-411, 2016. doi:10.1111/nph.14325

F. Walder, H. Niemann, M. Natarajan, M. F. Lehmann, T. Boller, y A. Wiemken, “Mycorrhizal Networks: common goods of plants shared under unequal terms of trade,” Plant Physiology, vol. 156, no. 2, pp. 789-797, 2012.doi:10.1104/pp.112.195727

L. Philip, S. Simard, y M. Jones, “Pathways for below-ground carbon transfer between paper birch andDouglas-fir seedlings,” Plant Ecology & Diversity, vol. 3, no. 3, pp. 221- 233, 2010. doi:10.1080/17550874.2010.502564

Y. Y. Song, S. W. Simard, A. Carrol, W. W. Mohn, y R. S. Zeng, “Defoliation of interior Douglas-fir elicits car-bon transfer and stress signalling to ponderosa pine neighbors through ectomycorrhizal networks,” Scientific Reports, vol. 5, no. 1, 2015. doi:10.1038/srep08495

M. Achatz, E. K. Morris, F. Müller, M. Hilker, y M. C. Rilling, “Soil hypha-mediated movement of allelochemicals:

arbuscular mycorrhizae extend the bioactive zone of juglone,” Functional Ecology, vol. 28, no. 4, pp. 1020- 1029, 2014. doi:10.1111/1365-2435.12208

E. K. Barto, M. Hilker, F. Müler, B. K. Mohney, J. D. Weidenhamer, y M. C. Rilling, “The fungal fast lane: common mycorrhizal networks extend bioactive zones of allelochemicals in soils,” PLoS One, vol. 6, no. 11, p. e27195, 2011. doi:10.1371/journal.pone.0027195

C. H. Kong, S. Z. Zhang, Y. H. Li, Z. C. Xia, X. F. Yang, S. J. Meiners, y P. Wang, “Plant neighbor detection and allelochemical response are driven by root-secreted signaling chemicals,” Nature communications, vol. 9, no. 1, 2018. doi:10.1038/s41467-018-06429-1

I. Alexander. & M. A. Selosse, “Mycorrhizas in tropical forests: a neglected research imperative”, New Phytologist, vol. 182 , pp. 14-16. 2019

T. Klein, R. T. Siegwolf & C. Körner, “Belowground carbon trade among tall trees in a temperate forest”, Science, vol. 352, pp. 342-344, 2016.

G. Kaschuk, T. W. Kuyper, P. E Leffelaar, M. Hungria & K. E. Giller, “Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses?”, Soil Biology and Biochemistry, vol. 41, pp. 1233-1244, 2009.

J. Pérez & D. Read, “Los hongos ectomicorrízicos, lazos vivientes que conectan y nutren a los árboles en la naturaleza”, Interciencia, vol. 29, pp. 239-247, 2004.

S. W. Simard, D. A. Perry, M. D. Myrold, D. D. Durall & R. Molina, “Net transfer of carbon between ectomycor- rhizal tree species in the field”, Nature, vol. 388, pp. 579, 1997.

A. Vidal, (2017) “Los isótopos estables de carbono y nitrógeno como biomarcadores para la trazabilidad alimentaria” [Online]. Available: https://ruc.udc.es/dspace/bitstream/handle/2183/19621/VidalFernandez_

Alejandra_TFG_2017.pdf?sequence=2&isAllowed=y

F. Crawford, R. A. McDonald & S. Bearhop, “Applications of stable isotope techniques to the ecology of mam-mals”, Mammal Review, vol. 38, pp. 87-107, 2008.

T. E. Dawson, S. Mambelli, A. H. Plamboeck, P. H. Templer & K. P. Tu, “Stable isotopes in plant ecology”, Annual review of ecology and systematics, vol. 33, pp. 507-555, 2002.

D. L. Jones, C. Nguyen & R. D. Finlay, “Carbon flow in the rhizosphere: carbon trading at the soil-root interface”, Plant and soil, vol. 321, pp. 5-33, 2009.

S. W. Jones, M. D. Jones & D. M. Durall, “Carbon and nutrients fluxes within and between mycorrhizal plants”, Mycorrhizal ecology, pp. 33-74, 2003.

S. W. Simard & D. M. Durall, “Mycorrhizal networks: a review of their extent function and importance, Canadian Journal of Botany, vol. 82. p.p 1140-1165, 2004.