Comparación de dos metodologías de cálculo de emisiones de gases efecto invernadero para vehículos en Costa Rica, 2014
Contenido principal del artículo
Resumen
Contar con métodos confiables para estimar las emisiones antropogénicas de Gases de Efecto Invernadero (GEI) es de vital importancia para diseñar estrategias eficientes para mitigar los efectos del cambio climático. Uno de estos métodos es el software MOVES (Motor Vehicle Emission Simulator) diseñado por la Agencia de Protección Ambiental de los Estados Unidos (US-EPA). Otra metodología es la implementada por el Instituto Meteorológico Nacional (IMN) de Costa Rica, la cual se basa en las directrices del Panel Intergubernamental de Cambio Climático (IPCC). El objetivo de este trabajo es determinar la factibilidad de utilizar MOVES en el contexto costarricense para la obtención de factores locales que mejoren las estimaciones de emisiones de GEI para fuentes móviles vehiculares en Costa Rica en el 2014. Para esto se evaluaron dos escenarios de emisiones estimadas de GEI calculados mediante el software de modelado MOVES y la metodología de cálculo implementada por el IMN. Para esto se recopiló información de diferentes fuentes oficiales para suplir de datos a ambas metodologías y realizar el análisis. Asimismo, se realizó una comparación cuantitativa con una escala Likert para determinar la confiabilidad de los dos métodos. Como resultados se determinó que MOVES calcula valores de emisión de GEI más altos que la metodología del IMN. Relacionado con esto, el análisis con las categorías Likert demostró que la confiabilidad de los datos de la metodología MOVES para Costa Rica es menor que los utilizados por el IMN. En conclusión la metodología de cálculo de emisiones de GEI por MOVES y por el IMN brindan un rango superior e inferior al cálculo de emisiones de GEI. Asimismo, ambas metodologías plantean aproximaciones complementarias al estudio de las emisiones de GEI.
Detalles del artículo
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación y pueda editarlo, reproducirlo, distribuirlo, exhibirlo y comunicarlo en el país y en el extranjero mediante medios impresos y electrónicos. Asimismo, asumen el compromiso sobre cualquier litigio o reclamación relacionada con derechos de propiedad intelectual, exonerando de responsabilidad a la Editorial Tecnológica de Costa Rica. Además, se establece que los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
Citas
von Stechow, C., McCollum, D., Riahi, K., Minx, J. C., Kriegler, E., van Vuuren, D. P., Jewell, J., Robledo-Abad, C., Hertwich, E., Tavoni, M., Mirasgedis, S., Lah, O., Roy, J., Mulugetta, Y., Dubash, N. K., Bollen, J., Ürge-Vorsatz, D., & Edenhofer, O. (2015). Integrating Global Climate Change Mitigation Goals with Other Sustainability Objectives: A Synthesis. Annual Review of Environment and Resources, 40, 363–394. https://doi.org/10.1146/annurev-environ-021113-095626
World Economic Forum. (2022). The Global Risks Report 2022 17th Edition.
IPCC. (2022). Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. In V. Masson-Delmotte & P. Zhai (Eds.), Global Warming of 1.5°C. Cambridge University Press. https://doi.org/10.1017/9781009157940.001
IPCC. (2014). Cambio climático 2014 Mitigación del cambio climático Resumen para responsables de políticas. https://www.ipcc.ch/site/assets/uploads/2018/03/WGIIIAR5_SPM_TS_Volume_es-1.pdf
IPCC. (2006). Chapter 3: Mobile Combustion. 2006 IPCC Guidelines for National Greenhouse Gas Inventories, 2, 1–78
Edelenbosch, O. Y., McCollum, D. L., van Vuuren, D. P., Bertram, C., Carrara, S., Daly, H., Fujimori, S., Kitous, A., Kyle, P., Ó Broin, E., Karkatsoulis, P., & Sano, F. (2017). Decomposing passenger transport futures: Comparing results of global integrated assessment models. Transportation Research Part D: Transport and Environment, 55, 281–293. https://doi.org/10.1016/j.trd.2016.07.003
Reynolds, A. W., & Broderick, B. M. (2002). Development of an emissions inventory model for mobile sources. Transportation Research Part D 5, 5(2), 77–101. DOI: https://doi.org/10.1016/S1361-9209(99)00025-5
Zhang, K., Lei, Y., & Guofang, L. I. (2013). Factors affecting vehicular emissions and emission model. Fourth International Conference on Transportation Engineering, American Society of Civil Engineers, Reston, Virginia, USA.
United States Environment Protection Agency (2012). Motor Vehicle Emission Simulator (MOVES): User Guide Version, MOVES2010b. https://www.epa.gov/moves
Tolvett, S., Osses, M., & Lents, J. M. (2009). Análisis de emisiones en ruta de vehículos diésel en Ciudad de México, Santiago y São Paulo, Tesis de Maestría en Ingeniería, 177–181, Universidad de Chile, Santiago, Chile. https://repositorio.uchile.cl/handle/2250/102234
Vicuña, S. (2014). Inventarios de emisiones de gases de efecto invernadero: Un análisis para Chile, El Salvador, México y el Uruguay, Comisión Económica para América Latina y el Caribe (CEPAL), repositorio.cepal.org/handle/11362/37624
Alcaldía Mayor de Bogotá (2009). Elementos técnicos del plan decenal de descontaminación de Bogotá́ – Parte 2, inventario de Emisiones Provenientes de Fuentes Fijas y Móviles https://oab.ambientebogota.gov.co/?post_type=dlm_download&p=3437
Loría Salazar, L. G. (2014). Vigesimoprimer informe estado de la nación en desarrollo humano sostenible (2014). Informe Final. Implicaciones en infraestructura y transporte, https://repositorio.conare.ac.cr/handle/20.500.12337/892
Ministerio del Ambiente y Energía. (2019). Costa Rica 2019: Inventario Nacional de gases de efecto invernadero y absorción de carbono 2015, https://cambioclimatico.go.cr/inventario-nacional-de-gases-de-efecto-invernadero-ingei/
Steinvorth Álvarez, A. (2016). Mejoras en la calidad de aire mediante la reducción de emisiones vehiculares de carbono negro en Costa Rica. Éxito Empresarial, 303, 1–4.
Ministerio del Ambiente y Energía. (2021). Costa Rica 2021: Cuarta Comunicación Nacional a la Convención Marco de Naciones Unidas sobre el Cambio Climático, http://cglobal.imn.ac.cr/index.php/publications/cuartacomunicacionnacional/
Ministerio de Obras Públicas y Transportes. (2015). Anuario estadístico del sector transporte e infraestructura 2014. http://repositorio.mopt.go.cr:8080/xmlui/bitstream/handle/123456789/164/388.1-1.2014.pdf?sequence=1&isAllowed=y
Instituto Meteorológico Nacional. (2021). Factores de emisión de gases de efecto invernadero. http://cglobal.imn.ac.cr/index.php/publications/factores-de-emision-gei-decima-edicion-2021/
Refinadora Costarricense de Petróleo. (2017). Ventas de productos. https://datosabiertos.recope.go.cr/conjunto/ventas
Secretaría de Planificación del Subsector Energía. (2018). Balance Energético Nacional 2014. http://www.sinamecc.go.cr/datos-abiertos/bne
Hooftman, N., Messagie, M., van Mierlo, J., & Coosemans, T. (2018). A review of the European passenger car regulations – Real driving emissions vs local air quality. In Renewable and Sustainable Energy Reviews, 86, 1–21, DOI: https://doi.org/10.1016/j.rser.2018.01.012
Cremades, L. v, & Rincón, G. (2011). Valoración cualitativa de la calidad de un inventario de emisiones industriales para el modelado de dispersión de contaminantes en la costa nororiental de Venezuela. Interciencia, 36(2), 128–134.
Rodríguez-Yáñez, J. E. (2018). Estimación cualitativa de la incertidumbre para el inventario de contaminantes tóxicos del aire del gran área metropolitana en el 2007. Repertorio Científico, 21(2), 15–22. DOI: https://doi.org/10.22458/rc.v21i2.2406
Schipper, L., Deakin, E., McAndrews, C. (2011). Carbon Dioxide Emissions from Urban Road Transport in Latin America: CO2 Reduction as a Co-Benefit of Transport Strategies. In: Rothengatter, W., Hayashi, Y., Schade, W. (eds) Transport Moving to Climate Intelligence. Transportation Research, Economics and Policy. Springer, New York, NY. DOI: https://doi.org/10.1007/978-1-4419-7643-7_8
Zhang, T. C., & Surampalli, R. Y. (2013). Climate Change Modeling, Mitigation, and Adaptation, Capítulo 5: Impact of Greenhouse Gas Emissions and Climate Change, American Society of Civil Engineers, Reston, Virginia, USA.
Bai, S., Eisinger, D., & Niemeier, D. (2009). MOVES vs. EMFAC: A Comparison of Greenhouse Gas Emissions Using Los Angeles County, Transportation Research Board 2009 Annual Meeting, https://www.researchgate.net/publication/228646270
Zhao, J., Yun, M., Chen, Z., & Mo, H. (2014). The method for determining vehicle’s fuel consumption and exhaust emissions under different traffic conditions, Conference: 14th COTA International Conference of Transportation Professionals, American Society of Civil Engineers, Reston, Virginia, USA.
Liu, H., Wei, H., & Yao, Z. (2014). Validating MOVES PM2.5 Emission Factor Empirically by Considering Accumulative Emission Effect. 14th COTA International Conference of Transportation Professionals, 3017–3028.
Al-Ghandour, M. (2014). Analysis of Fuel Consumption and Emissions at Roundabout with Slip Lane, Using SIDRA and Validation by MOVES Simulation, Second Transportation & Development Congress DOI: https://doi.org/10.1061/9780784413586.029
Instituto Nacional de Seguros. (2015). Registro de marchamo 1984- 2015.