Nanomateriales en aplicaciones agrícolas. Recientes avances en la agroindustria bananera
Contenido principal del artículo
Resumen
La aplicación de la nanotecnología en la agricultura se ha visto reflejada en un considerable número de contribuciones científicas que demuestran un potencial interés en el desarrollo de nuevos productos que incluye desde cuidados del suelo, frutos y cultivos, hasta la mejora en las formulaciones de fertilizantes, pesticidas, estimuladores y reguladores de crecimiento de las plantas. Producto de una revisión bibliográfica exhaustiva, se describen conceptos, propiedades y ventajas de sistemas nanoestructurados aplicados en sistemas de producción agrícolas en diferentes países de América, Asia y África. Se exploran los avances en sistemas de liberación de compuestos bioactivos empleando matrices naturales y sintéticas en sistemas vegetales. Además, se discute el efecto de la adición de nanomateriales y los efectos positivos y adversos sobre plantas y en el medio ambiente. Finalmente, se expone el uso de estrategias basadas en aplicaciones de la nanotecnología y los desafíos para el control de enfermedades en el cultivo de banano.
Detalles del artículo
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación y pueda editarlo, reproducirlo, distribuirlo, exhibirlo y comunicarlo en el país y en el extranjero mediante medios impresos y electrónicos. Asimismo, asumen el compromiso sobre cualquier litigio o reclamación relacionada con derechos de propiedad intelectual, exonerando de responsabilidad a la Editorial Tecnológica de Costa Rica. Además, se establece que los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
Citas
V. Mohanraj and Y. Chen, “Nanoparticles: a review of particle toxicology following inhalation exposure,” Trop. J. Pharm. Res., vol. 5, no. 1, pp. 125-561–573135, Jun. 2006, doi: 10.3109/08958378.2010.642021.
R. Muñoz-Espí, C. K. Weiss, and K. Landfester, “Inorganic nanoparticles prepared in miniemulsion,” Current Opinion in Colloid and Interface Science, vol. 17, no. 4. Elsevier Ltd, pp. 212–224, 2012. doi: 10.1016/j.cocis.2012.04.002.
G. Salas, R. Costo, and M. del P. Morales, “Synthesis of Inorganic Nanoparticles,” vol. 4, 2012, pp. 35–79. doi: 10.1016/B978-0-12-415769-9.00002-9.
R. Grillo, A. H. Rosa, and L. F. Fraceto, “Engineered nanoparticles and organic matter: A review of the state-of-the-art,” Chemosphere, vol. 119, pp. 608–619, 2015, doi: 10.1016/j.chemosphere.2014.07.049.
M. Nasrollahzadeh, Z. Issaabadi, M. Sajjadi, S. M. Sajadi, and M. Atarod, Types of Nanostructures, 1st ed., vol. 28. Elsevier Ltd., 2019. doi: 10.1016/B978-0-12-813586-0.00002-X.
V. Ghormade, M. V Deshpande, and K. M. Paknikar, “Perspectives for nano-biotechnology enabled protection and nutrition of plants,” Biotechnol. Adv., vol. 29, no. 6, pp. 792–803, 2011, doi: 10.1016/j.biotechadv.2011.06.007.
A. H. Faraji and P. Wipf, “Nanoparticles in cellular drug delivery,” Bioorg. Med. Chem., vol. 17, no. 8, pp. 2950–2962, Apr. 2009, doi: 10.1016/j.bmc.2009.02.043.
P. K. Rai et al., “Nanoparticle-plant interaction: Implications in energy, environment, and agriculture,” Environ. Int., vol. 119, no. April, pp. 1–19, Oct. 2018, doi: 10.1016/j.envint.2018.06.012.
S. C. Capaldi Arruda, A. L. Diniz Silva, R. Moretto Galazzi, R. Antunes Azevedo, and M. A. Zezzi Arruda, “Nanoparticles applied to plant science: A review,” Talanta, vol. 131, pp. 693–705, Jan. 2015, doi: 10.1016/j.talanta.2014.08.050.
M. Khater, A. de la Escosura-Muñiz, D. Quesada-González, and A. Merkoçi, “Electrochemical detection of plant virus using gold nanoparticle-modified electrodes,” Anal. Chim. Acta, vol. 1046, pp. 123–131, Jan. 2019, doi: 10.1016/j.aca.2018.09.031.
M. Nasrollahzadeh, M. Atarod, M. Sajjadi, S. M. Sajadi, and Z. Issaabadi, “Plant-Mediated Green Synthesis of Nanostructures: Mechanisms, Characterization, and Applications,” in Interface Science and Technology, 1st ed., vol. 28, Elsevier Ltd., 2019, pp. 199–322. doi: 10.1016/B978-0-12-813586-0.00006-7.
A. Pérez-de-Luque, “Interaction of nanomaterials with plants: What do we need for real applications in agriculture?,” Front. Environ. Sci., vol. 5, no. APR, pp. 1–7, 2017, doi: 10.3389/fenvs.2017.00012.
E. Vázquez-núñez, M. L. López-moreno, G. De, R. Álvarez, and F. Fernández-luqueño, Agricultural Nanobiotechnology. Cham: Springer International Publishing, 2018. doi: 10.1007/978-3-319-96719-6.
R. Ladj et al., “Polymer Encapsulation of Inorganic Nanoparticles for Biomedical Applications Authors:,” Int. J. Pharm., 2013, doi: 10.1016/j.ijpharm.2013.09.001.
A. Pugazhendhi, T. N. J. I. Edison, I. Karuppusamy, and B. Kathirvel, “Inorganic nanoparticles: A potential cancer therapy for human welfare,” Int. J. Pharm., vol. 539, no. 1–2, pp. 104–111, Mar. 2018, doi: 10.1016/j.ijpharm.2018.01.034.
A. S. C. Capaldi et al., “Nanoparticles applied to plant science: A review,” Talanta, vol. 131, pp. 693–705, 2015, doi: 10.1016/j.talanta.2014.08.050.
P. Wang, E. Lombi, F. Zhao, and P. M. Kopittke, “Nanotechnology : A New Opportunity in Plant Sciences,” Trends Plant Sci., vol. 21, no. 8, pp. 699–712, 2016, doi: 10.1016/j.tplants.2016.04.005.
Z. Li et al., “Study of UV-shielding properties of novel porous hollow silica nanoparticle carriers for avermectin,” vol. 246, no. December 2006, pp. 241–246, 2007, doi: 10.1002/ps.
M. Linglan et al., “Rubisco activase mRNA expression in spinach: Modulation by nanoanatase treatment,” Biol. Trace Elem. Res., vol. 122, no. 2, pp. 168–178, 2008, doi: 10.1007/s12011-007-8069-4.
E. H. Dehkourdi and M. Mosavi, “Effect of Anatase Nanoparticles ( TiO 2 ) on Parsley Seed Germination ( Petroselinum crispum ) In Vitro,” pp. 283–286, 2013, doi: 10.1007/s12011-013-9788-3.
M. N. Khan, M. Mobin, Z. K. Abbas, K. A. AlMutairi, and Z. H. Siddiqui, “Role of nanomaterials in plants under challenging environments,” Plant Physiol. Biochem., vol. 110, pp. 194–209, Jan. 2017, doi: 10.1016/j.plaphy.2016.05.038.
R. Nair, S. H. Varghese, B. G. Nair, T. Maekawa, Y. Yoshida, and D. S. Kumar, “Plant Science Nanoparticulate material delivery to plants,” Plant Sci., vol. 179, no. 3, pp. 154–163, 2010, doi: 10.1016/j.plantsci.2010.04.012.
J. Young, K. Byung, and J. Geunhwa, “Antifungal Activity of Silver Ions and Nanoparticles on Phytopathogenic Fungi,” Plant Dis., vol. 93, no. 10, pp. 1037–1043, 2009, doi: 10.1094/PDIS-93-10-1037.
J.-S. Min et al., “Effects of Colloidal Silver Nanoparticles on Sclerotium-Forming Phytopathogenic Fungi,” Plant Pathol. J., vol. 25, no. 4, pp. 376–380, Dec. 2009, doi: 10.5423/PPJ.2009.25.4.376.
A. Strayer, I. Ocsoy, W. Tan, J. B. Jones, and M. L. Paret, “Low Concentrations of a Silver-Based Nanocomposite to Manage Bacterial Spot of Tomato in the Greenhouse,” Plant Dis., vol. 100, no. 7, pp. 1460–1465, Jul. 2016, doi: 10.1094/PDIS-05-15-0580-RE.
I. Ocsoy et al., “Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans,” ACS Nano, vol. 7, no. 10, pp. 8972–8980, 2013, doi: 10.1021/nn4034794.
J. J. Bello-Bello et al., “Hormetic Response by Silver Nanoparticles on In Vitro Multiplication of Sugarcane ( Saccharum spp. Cv. Mex 69-290) Using a Temporary Immersion System,” Dose-Response, vol. 15, no. 4, p. 155932581774494, Dec. 2017, doi: 10.1177/1559325817744945.
C. de O. Timoteo et al., “In vitro growth of Physalis peruviana L. affected by silver nanoparticles,” 3 Biotech, vol. 9, no. 4, p. 145, Apr. 2019, doi: 10.1007/s13205-019-1674-z.
I. Iavicoli, V. Leso, L. Fontana, and E. Calabrese, “Nanoparticle Exposure and Hormetic Dose–Responses: An Update,” Int. J. Mol. Sci., vol. 19, no. 3, p. 805, Mar. 2018, doi: 10.3390/ijms19030805.
F. A. Strayer-Scherer., YY. Liao., M. Young., L. Ritchie., G. E. Vallad., S. Santra. and M. L. J.H., Clark, D., Jones, J. B., and Paret, “Advanced Copper Composites against Copper-Tolerant Xanthomonas perforans and Tomato Bacterial Spot,” Phytopathology, pp. 1–40, 2017.
M. Shenashen, A. Derbalah, A. Hamza, A. Mohamed, and S. El Safty, “Antifungal activity of fabricated mesoporous silica nanoparticles against early blight of tomato,” Egypt. J. Basic Appl. Sci., vol. 5, no. 2, pp. 145–150, 2018, doi: 10.1016/j.ejbas.2018.05.002.
K. J. Rao and S. Paria, “Use of sulfur nanoparticles as a green pesticide on Fusarium solani and Venturia inaequalis phytopathogens,” RSC Adv., vol. 3, no. 26, p. 10471, 2013, doi: 10.1039/c3ra40500a.
W. H. Elmer and J. C. White, “The use of metallic oxide nanoparticles to enhance growth of tomatoes and eggplants in disease infested soil or soilless medium,” Environ. Sci. Nano, vol. 3, no. 5, pp. 1072–1079, 2016, doi: 10.1039/c6en00146g.
W. Elmer et al., “Effect of Metalloid and Metal Oxide Nanoparticles on Fusarium Wilt of Watermelon,” Plant Dis., vol. 102, no. 7, pp. 1394–1401, Jul. 2018, doi: 10.1094/PDIS-10-17-1621-RE.
I. O. Adisa et al., “Role of Cerium Compounds in Fusarium Wilt Suppression and Growth Enhancement in Tomato ( Solanum lycopersicum ),” J. Agric. Food Chem., vol. 66, no. 24, pp. 5959–5970, Jun. 2018, doi: 10.1021/acs.jafc.8b01345.
H. Chu et al., “A nanosized Ag-silica hybrid complex prepared by γ-irradiation activates the defense response in Arabidopsis,” Radiat. Phys. Chem., vol. 81, no. 2, pp. 180–184, 2012, doi: 10.1016/j.radphyschem.2011.10.004.
R. Gogoi, “Suitability of Nano-sulphur for Biorational Management of Powdery mildew of Okra (Abelmoschus esculentus Moench) caused by Erysiphe cichoracearum,” J. Plant Pathol. Microbiol., vol. 04, no. 04, 2013, doi: 10.4172/2157-7471.1000171.
A. H. Wani and M. A. Shah, “A unique and profound effect of MgO and ZnO nanoparticles on some plant pathogenic fungi,” J. Appl. Pharm. Sci., vol. 2, no. 3, pp. 40–44, 2012, doi: 10.7324/JAPS.2012.2307.
T. N. V. K. V. Prasad et al., “EFFECT OF NANOSCALE ZINC OXIDE PARTICLES ON THE GERMINATION, GROWTH AND YIELD OF PEANUT,” J. Plant Nutr., vol. 35, no. 6, pp. 905–927, Apr. 2012, doi: 10.1080/01904167.2012.663443.
H. Guan, D. Chi, J. Yu, and X. Li, “A novel photodegradable insecticide : Preparation , characterization and properties evaluation of nano-Imidacloprid,” vol. 92, pp. 83–91, 2008, doi: 10.1016/j.pestbp.2008.06.008.
A. Ranjan, V. D. Rajput, T. Minkina, T. Bauer, A. Chauhan, and T. Jindal, “Nanoparticles induced stress and toxicity in plants,” Environ. Nanotechnology, Monit. Manag., vol. 15, no. December 2020, p. 100457, May 2021, doi: 10.1016/j.enmm.2021.100457.
M. Rizwan et al., “Effects of nanoparticles on trace element uptake and toxicity in plants: A review,” Ecotoxicol. Environ. Saf., vol. 221, p. 112437, Sep. 2021, doi: 10.1016/j.ecoenv.2021.112437.
W. Zhang, J. Long, J. Geng, J. Li, and Z. Wei, “Impact of Titanium Dioxide Nanoparticles on Cd Phytotoxicity and Bioaccumulation in Rice (Oryza sativa L.),” Int. J. Environ. Res. Public Health, vol. 17, no. 9, p. 2979, Apr. 2020, doi: 10.3390/ijerph17092979.
L. Tostado, Atlas de los Pesticidas, Primera. Berlin: Fundación Heinrich Böll, 2023. [Online]. Available: https://www.dw.com/es/atlas-de-los-pesticidas-la-huella-de-un-negocio-tóxico-en-el-mundo/a-60428078
V. Saharan et al., “Synthesis and in vitro antifungal efficacy of Cu-chitosan nanoparticles against pathogenic fungi of tomato,” in International Journal of Biological Macromolecules, vol. 75, Elsevier B.V., 2015, pp. 346–353. doi: 10.1016/j.ijbiomac.2015.01.027.
H. Chhipa, “Nanofertilizers and nanopesticides for agriculture,” Environ. Chem. Lett., vol. 15, no. 1, pp. 15–22, 2017, doi: 10.1007/s10311-016-0600-4.
R. Raliya et al., “Cu-chitosan nanoparticle boost defense responses and plant growth in maize (Zea mays L.),” Sci. Rep., vol. 7, no. 1, pp. 1–11, 2017, doi: 10.1038/s41598-017-08571-0.
R. Grillo, N. Z. P. dos Santos, C. R. Maruyama, A. H. Rosa, R. de Lima, and L. F. Fraceto, “Poly(ɛ-caprolactone) nanocapsules as carrier systems for herbicides: Physico-chemical characterization and genotoxicity evaluation,” J. Hazard. Mater., vol. 231–232, pp. 1–9, Sep. 2012, doi: 10.1016/j.jhazmat.2012.06.019.
M. aJ Villaseñor and Á. Ríos, “Nanomaterials for water cleaning and desalination, energy production, disinfection, agriculture and green chemistry,” Environ. Chem. Lett., vol. 16, no. 1, pp. 11–34, 2018, doi: 10.1007/s10311-017-0656-9.
A. L. Boehm, I. Martinon, R. Zerrouk, E. Rump, and H. Fessi, “Nanoprecipitation technique for the encapsulation of agrochemical active ingredients,” J. Microencapsul., vol. 20, no. 4, pp. 433–441, Jan. 2003, doi: 10.1080/0265204021000058410.
Y. Liu, Z. Tong, and R. K. Prud’homme, “Stabilized polymeric nanoparticles for controlled and efficient release of bifenthrin,” Pest Manag. Sci., vol. 64, no. 8, pp. 808–812, Aug. 2008, doi: 10.1002/ps.1566.
Y. Liu, L. Yan, P. Heiden, and P. Laks, “Use of nanoparticles for controlled release of biocides in solid wood,” J. Appl. Polym. Sci., vol. 79, no. 3, pp. 458–465, Jan. 2001, doi: 10.1002/1097-4628(20010118)79:3<458::AID-APP80>3.0.CO;2-H.
E. V. Campos Ramos et al., “Polymeric and solid lipid nanoparticles for sustained release of carbendazim and tebuconazole in agricultural applications,” Sci. Rep., vol. 5, no. 1, p. 13809, Nov. 2015, doi: 10.1038/srep13809.
A. E. S. Pereira, R. Grillo, N. F. S. Mello, A. H. Rosa, and L. F. Fraceto, “Application of poly(epsilon-caprolactone) nanoparticles containing atrazine herbicide as an alternative technique to control weeds and reduce damage to the environment,” J. Hazard. Mater., vol. 268, pp. 207–215, Mar. 2014, doi: 10.1016/j.jhazmat.2014.01.025.
H. C. Oliveira, R. Stolf-Moreira, C. B. R. Martinez, R. Grillo, M. B. de Jesus, and L. F. Fraceto, “Nanoencapsulation enhances the post-emergence herbicidal activity of atrazine against mustard plants,” PLoS One, vol. 10, no. 7, p. e0132971, Jul. 2015, doi: 10.1371/journal.pone.0132971.
O. Rojas, M. Moya, M. Sibaja, C. Ruepert, and J. Vega-Baudrit, “Estudio de la liberación controlada de plaguicidas incorporados en hidrogeles de ácido itacónico,” Rev. Iberoam. polímeros, vol. 5, no. 3, pp. 133–143, 2004.
M. R. Forim, E. S. Costa, M. F. das G. F. da Silva, J. B. Fernandes, J. M. Mondego, and A. L. Boiça Junior, “Development of a New Method To Prepare Nano-/microparticles Loaded with Extracts of Azadirachta indica, Their Characterization and Use in Controlling Plutella xylostella,” J. Agric. Food Chem., vol. 61, no. 38, pp. 9131–9139, Sep. 2013, doi: 10.1021/jf403187y.
F.-L. Yang, X.-G. Li, F. Zhu, and C.-L. Lei, “Structural Characterization of Nanoparticles Loaded with Garlic Essential Oil and Their Insecticidal Activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae),” J. Agric. Food Chem., vol. 57, no. 21, pp. 10156–10162, Nov. 2009, doi: 10.1021/jf9023118.
P. Mondal, R. Kumar, and R. Gogoi, “Azomethine based nano-chemicals: Development, in vitro and in vivo fungicidal evaluation against Sclerotium rolfsii, Rhizoctonia bataticola and Rhizoctonia solani,” Bioorg. Chem., vol. 70, pp. 153–162, 2017, doi: 10.1016/j.bioorg.2016.12.006.
S. Pradhan et al., “Entomotoxicity and biosafety assessment of PEGylated acephate nanoparticles: A biologically safe alternative to neurotoxic pesticides,” J. Environ. Sci. Heal. - Part B Pestic. Food Contam. Agric. Wastes, vol. 48, no. 7, pp. 559–569, 2013, doi: 10.1080/03601234.2013.774891.
Sandhya, S. Kumar, D. Kumar, and N. Dilbaghi, “Preparation, characterization, and bio-efficacy evaluation of controlled release carbendazim-loaded polymeric nanoparticles,” Environ. Sci. Pollut. Res., vol. 24, no. 1, pp. 926–937, Jan. 2017, doi: 10.1007/s11356-016-7774-y.
C. R. Maruyama, N. Bilesky-José, R. de Lima, and L. F. Fraceto, “Encapsulation of Trichoderma harzianum Preserves Enzymatic Activity and Enhances the Potential for Biological Control,” Front. Bioeng. Biotechnol., vol. 8, no. March, pp. 1–14, 2020, doi: 10.3389/fbioe.2020.00225.
C. Sun et al., “Encapsulation and controlled release of hydrophilic pesticide in shell cross-linked nanocapsules containing aqueous core,” Int. J. Pharm., vol. 463, no. 1, pp. 108–114, 2014, doi: 10.1016/j.ijpharm.2013.12.050.
M. G. Paulraj et al., “Comparative studies of tripolyphosphate and glutaraldehyde cross-linked chitosan-botanical pesticide nanoparticles and their agricultural applications,” Int. J. Biol. Macromol., vol. 104, pp. 1813–1819, 2017, doi: 10.1016/j.ijbiomac.2017.06.043.
J. L. De Oliveira et al., “Geraniol Encapsulated in Chitosan/Gum Arabic Nanoparticles: A Promising System for Pest Management in Sustainable Agriculture,” J. Agric. Food Chem., vol. 66, no. 21, pp. 5325–5334, 2018, doi: 10.1021/acs.jafc.8b00331.
F. M. Pelissari, P. J. do A. Sobral, and F. C. Menegalli, “Isolation and characterization of cellulose nanofibers from banana peels,” Cellulose, vol. 21, no. 1, pp. 417–432, Feb. 2014, doi: 10.1007/s10570-013-0138-6.
S. Majumder and S. Johari, “Development of a gold-nano particle based novel dot immunobinding assay for rapid and sensitive detection of Banana bunchy top virus,” J. Virol. Methods, vol. 255, pp. 23–28, May 2018, doi: 10.1016/j.jviromet.2018.01.015.
S. Galdiero, A. Falanga, M. Vitiello, M. Cantisani, V. Marra, and M. Galdiero, “Silver nanoparticles as potential antiviral agents,” Molecules, vol. 16, no. 10, pp. 8894–8918, 2011, doi: 10.3390/molecules16108894.
E. K. F. Elbeshehy, A. M. Elazzazy, and G. Aggelis, “Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against Bean Yellow Mosaic Virus and human pathogens,” Front. Microbiol., vol. 6, no. MAY, pp. 1–13, 2015, doi: 10.3389/fmicb.2015.00453.
C. Lustriane, F. M. Dwivany, V. Suendo, and M. Reza, “Effect of chitosan and chitosan-nanoparticles on post harvest quality of banana fruits,” J. Plant Biotechnol., vol. 45, no. 1, pp. 36–44, 2018, doi: 10.5010/JPB.2018.45.1.036.
M. N. Helaly, M. A. El-Metwally, H. El-Hoseiny, S. A. Omar, and N. I. El-Sheery, “Effect of nanoparticles on biological contamination of in vitro cultures and organogenic regeneration of banana,” Aust. J. Crop Sci., vol. 8, no. 4, pp. 612–624, 2014.
D. Giap, T. K. Thuy, T. H. Trang, T. Duoc, T. Tuan, and D. Hieu, “Effects of nano silver on the growth of banana ( Musa spp .) cultured in vitro,” J. Vietnamese Environ., vol. 10, no. 2, pp. 92–98, 2018, doi: 10.13141/jve.vol10.no2.pp92-98.
H. M. H. Salama, “Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.),” Int. Res. J. Biotechnol., vol. 3, no. 10, pp. 190–197, 2012.
N. Vidyalakshmi, R. Thomas, R. Aswani, G. P. Gayatri, E. K. Radhakrishnan, and A. Remakanthan, “Comparative analysis of the effect of silver nanoparticle and silver nitrate on morphological and anatomical parameters of banana under in vitro conditions,” Inorg. Nano-Metal Chem., vol. 47, no. 11, pp. 1530–1536, Nov. 2017, doi: 10.1080/24701556.2017.1357605.
H. Ureña-Saborío, S. Madrigal-Carballo, J. Sandoval, J. R. Vega-Baudrit, and A. Rodríguez-Morales, “Encapsulation of bacterial metabolic infiltrates isolated from different Bacillus strains in chitosan nanoparticles as potential green chemistry-based biocontrol agents against Radopholus similis,” J. Renew. Mater., vol. 5, no. 3, pp. 290–299, Jul. 2017, doi: 10.7569/JRM.2017.634119.