Metodología indirecta para la estimación de vida útil residual de transformadores de potencia a partir de la evaluación de los materiales dieléctricos
Contenido principal del artículo
Resumen
Una adecuada y confiable operación de los transformadores de potencia en las redes eléctricas constituye un factor determinante en la continuidad de servicio, lo cual justifica su atención en la evolución de su integridad, definida sobre todo por su sistema dieléctrico compuesto principalmente por papel – aceite. La investigación se centró en el análisis de pruebas químicas aplicadas a un grupo de transformadores de potencia de 10 MVA con distintos periodos de operación y su correlación con el envejecimiento real estimado por el Grado de Polimerización (GP) y el 2-furaldehído (2-FAL), además de pruebas de esfuerzo mecánico al papel dieléctrico. Los esfuerzos medidos en el papel dieléctrico presentaron una reducción de 74.49 % respecto al valor mínimo establecido por la IEC (80 MPa) y un GP aproximado de 88.4. Las condiciones operativas de cada transformador junto con el porcentaje de humedad del papel dieléctrico, los gases totales y de Oxígeno medidos en ppm, permitieron estimar el 2-FAL de forma indirecta. Los resultados aproximados del Grado de Polimerización fueron suficientes para su evaluación como condición “levemente envejecida”. De modo que, la aproximación de la vida útil residual máxima resultó ser de 27 años. Dicha estimación es congruente con los bajos niveles de gases combustibles medidos (menores a 700 ppm) y de Oxígeno.
Detalles del artículo
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación y pueda editarlo, reproducirlo, distribuirlo, exhibirlo y comunicarlo en el país y en el extranjero mediante medios impresos y electrónicos. Asimismo, asumen el compromiso sobre cualquier litigio o reclamación relacionada con derechos de propiedad intelectual, exonerando de responsabilidad a la Editorial Tecnológica de Costa Rica. Además, se establece que los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
Citas
R. Polansky et al, “Comparison of the mineral oil lifetime estimates obtained by differential scanning calorimetry, infrared spectroscopy, and dielectric dissipation factor measurements,” Thermochimica Acta, vol. 647, pp. 86-93, 2017.
A. Moreno Villa, “Estandarización E Implementación De La Norma ASTM D-4243 Para La Determinación Del Grado De Polimerización Del Papel Eléctrico (Nuevo Y Usado) Como Aislante En Transformadores De Potencia Por El Método Del Promedio Viscosimétrico;” , Universidad Tecnológica de Pereira.
Margalló Gasco, “Diagnóstico Del Consumo De Vida De Un Transformador a Través Del Análisis De Compuestos Furánicos.”, 2012.
H. M et al, Guía Para El Mantenimiento Del Transformador. (3era ed ed.) Estados Unidos: Transformer Maintenance Institute, 2005.
R. Córdoba Salazar, “Desarrollo De Un Programa De Mantenimiento Basado En Confiabilidad Para Transformadores De Potencia.”, Universidad de Costa Rica, 2006.
M. Emsley et al, “Degradation of cellulosic insulation in power transformers. Part 4: Effects of ageing on the tensile strength of paper,” IEE Proceedings - Science, Measurement and Technology, vol. 147, (6), pp. 285-290, 2000.
D. J. T. Hill et al, “A study of degradation of cellulosic insulation materials in a power transformer. Part 2: tensile strength of cellulose insulation paper,” Polymer Degradation and Stability, vol. 49, (3), pp. 429-435, 1995.
C. Homagk, K. Mossner and T. Leibfried, “Investigation on degradation of power transformer solid insulation material,” in Oct 2008.
G. Jiménez-Araya and G. A. Gómez-Ramírez, “Comportamiento de los aislamientos sólidos de transformadores de potencia en condiciones ambientales no controladas,” Revista Tecnología En Marcha, vol. 29, (3), 2016.
M. Emsley, “Review of chemical indicators of degradation of cellulosic electrical paper insulation in oil-filled transformers,” IEEE Proceedings - Science, Measurement and Technology, vol. 141, (5), pp. 324, 1994.
Gholami, M. Mirzaie And H. R. Tayebi, “Insulation condition assessment of power transformers using accelerated ageing tests,” Turkish Journal of Electrical Engineering and Computer Sciences, vol. 17, (1), pp. 39-54, 2009.
D. J. T. Hill et al, “A study of degradation of cellulosic insulation materials in a power transformer. Part 2: tensile strength of cellulose insulation paper,” Polymer Degradation and Stability, vol. 49, (3), pp. 429-435, 1995.
D. Martin et al, “An Updated Model to Determine the Life Remaining of Transformer Insulation,” IEEE Transactions on Power Delivery, vol. 30, (1), pp. 395-402, 2015.
Johana Tatiana Sarria-Arias, Natalia Andrea Guerrero-Bello and Edwin Rivas-Trujillo, “Estado del arte del análisis de gases disueltos en transformadores de potencia,” Revista Facultad De Ingeniería, vol. 23, (36), pp. 105-122, 2014.
W. Flores et al, “Vida de transformadores de potencia sumergidos en aceite: Situación actual. Parte II. Correlación entre resultados de ensayos físico-químicos,” IEEE Latin American Transactions, vol. 5, (8), 2007.
Hillary, W. D. A. G et al, “A tool for estimating remaining life time of a power transformer,” in May 2017.
T. V. Oommen, “Moisture equilibrium in paper-oil insulation systems,” in Oct 1983.
F. Ortiz et al, “Estimating the age of power transformers using the concentration of furans in dielectric oil,” Renewable Energy and Power Quality Journal, pp. 1011-1015, May 2016.
R. A. Prasojo et al, “Transformer Paper Expected Life Estimation Using ANFIS Based on Oil Characteristics and Dissolved Gases (Case Study: Indonesian Transformers),” Energies, vol. 10, (8), pp. 1135, 2017.