Investigation into fluid dynamics for programmed conservation of heritage, applied to the Casa de la Cultura in Liberia
Main Article Content
Abstract
Programmed conservation represents a significant shift in how heritage buildings are maintained. Instead of waiting for visible damage to occur before taking action, this approach focuses on monitoring potential risks that could cause harm and scheduling conservation measures proactively. Computer fluid dynamics (CFD) software is often employed in energy and comfort analyses of spaces, but its capability to visualize airflow in buildings makes it valuable for predicting or explaining damage resulting from issues related to natural ventilation. This article outlines the methodology used to analyze natural ventilation flows within the Casa de la Cultura of Liberia in Costa Rica, using AUTODESK CFD Ultimate software and a data analysis strategy developed by Victor Fuentes Freixanet and Manuel Rodríguez Viqueira. Additionally, the findings emphasize that architectural structures are inherently connected to their surroundings. Therefore, before planning any intervention in an existing building, it is crucial to consider contextual variables. This project is part of the research initiative titled “The Impact of Using Liberia City’s Soil as a Construction Material on the Hygrothermal Performance of Internal Spaces through Simulation Techniques,” developed by the Instituto Tecnológico de Costa Rica in collaboration with the Association for the Culture of Liberia.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación y pueda editarlo, reproducirlo, distribuirlo, exhibirlo y comunicarlo en el país y en el extranjero mediante medios impresos y electrónicos. Asimismo, asumen el compromiso sobre cualquier litigio o reclamación relacionada con derechos de propiedad intelectual, exonerando de responsabilidad a la Editorial Tecnológica de Costa Rica. Además, se establece que los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
References
[1] E. Salazar-Ceciliano y R. E. Malavassi-Aguilar, «La conservación programada y su aplicación en la arquitectura: un análisis bibliométrico,» Tecnología en marcha, vol. 33, nº 8, pp. 79-88, 2020. https://doi.org/10.18845/tm.v33i8.5511
[2] Climate Change and Cultural Heritage Working Group International Council on Monuments and Sites - Icomos Paris, «The future of our pasts: enganging cultural heritage in climate action,» Icomos, París, 2019.
[3] H.-H. Hsu y . J.-S. Huang, «Passive Environmental Control at Neighborhood and Block Scales for Conservation of Historic Settlements: The Case Study of Huatzai Village in Wang-An, Taiwan,» Sustainability, vol. 14, nº 11840, 2022. https://doi.org/10.3390/su141911840
[4] A. S. Hussein y H. El-Shishiny, «Influences of wind flow over heritage sites: A case study of the wind environment over the Giza Plateau in Egypt,» Environmental Modelling & Software, vol. 24, nº 3, pp. 389-410, 2009. https://doi.org/10.1016/j.envsoft.2008.08.002
[5] N. Mesquita, . F. Soares, H. Paiva de Carvalho, J. Trovao, Pinheiro A., I. Tiago y A. Brizon Portugal, «Air and wall mycobiota interactions—A case study in the Old Cathedral of Coimbra,» de Viruses, Bacteria and Fungi in the Built Environment: Designing Healthy Indoor Environments, F. Pacheco-Torgal, V. Ivanov y J. O. Falkinham, Edits., Woodhead Publishing, 2022, pp. 101-125. https://doi.org/10.1016/B978-0-323-85206-7.00011-3
[6] P. Jerome, «Recommendations from the ICOMOS Scientific Council Symposium: Changing World, Changing Views of Heritage: Technological Change and Cultural Heritage,» ICOMOS, Valletta, 2009.
[7] S. Zhang, K. C. Kwok, H. Liu, Y. Jiang, K. Dong y B. Wang, «A CFD study of wind assessment in urban topology with complex wind flow,» Sustainable Cities and Society, vol. 71, 2021. https://doi.org/10.1016/j.scs.2021.103006
[8] D. Chang-Albizurez y R. E. Malavassi-Aguilar, «Centro histórico de Liberia, diagnóstico arquitectónico y urbano,» Tecnología en marcha, vol. 36, nº Número especial, pp. 6-19, 2023. https://doi.org/10.18845/tm.v36i9.6953
[9] «N° 18896-C Declaratoria patrimonial,» La Gaceta, nº 64, 3 abril 1989.
[10] V. Fuentes Freixanet y M. Rodríguez Viqueira, Ventilación natural: cálculos básicos para arquitectos, Ciudad de México: Universidad Auntónoma Metropolitana, 2004.
[11] E. Salazar-Ceciliano, «Análisis de flujo de ventilación mediante software de CFD como mecanismo de conservación del patrimonio, aplicado a la Antigua Capitanía de Puerto Limón,» Tecnología en marcha, vol. 33, nº 8, pp. 61-70, 2020. https://doi.org/10.18845/tm.v33i8.5509
[12] American Society of Heating, Refrigerator, and Air Conditioning Engineers, «ASHRAE Handbook, Fundamentals,» Atlanta, 2017.
[13] AUTODESK, «AUTODESK CFD,» [En línea]. Available: https://www.autodesk.com/products/cfd/overview?term=1-YEAR&tab=subscription&plc=SCFDM. [Último acceso: 21 Febrero 2025].
[14] Climate.OneBuilding, «Climate.OneBuilding,org,» 4 Noviembre 2024. [En línea]. Available:https://climate.onebuilding.org/WMO_Region_4_North_and_Central_America/CRI_Costa_Rica/index.html. [Último acceso: 11 Noviembre 2024].
[15] J.-Y. Deng, Y. Xia, H. Lao, Y. Ye, Z. Wang y H. Jiang, «Natural ventilation potential of teaching building complexes with different block shapes and layout patterns,» Journal of Building Engineering, vol. 96, 2024. https://doi.org/10.1016/j.jobe.2024.110420