Bidirectional propulsion of flexible oar swimmers
Main Article Content
Abstract
The ability to control microswimmers in the low Reynold’s regime can enable access to previously unreachable regions in the body for biomedical applications such as targeted drug delivery and microsurgery. Flexible oar swimmers can generate propulsion by oscillating passive elastic structures. However, bidirectionality has not been previously experimentally demonstrated with flexible oar swimmers. The inability to move backward limits the navigation capabilities of flexible oar microswimmers, especially in highly confined environments where turning is challenging or infeasible. Here, we experimentally demonstrated that bidirectional propulsion of flexible oar swimmers can be introduced by incorporating an intrinsically-curved profile that is transversely actuated at one end of the swimmer. We show that the intrinsically curved swimmers are capable of positive, negative, and frequency-dependent bidirectional propulsion which could be utilized in highly confined environments where turning is challenging or infeasible. Ultimately, with the ability to achieve bidirectional propulsion, we envision that the intrinsically curved robot can realize a new class of microswimmer that can address a broad range of unmet clinical needs.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación y pueda editarlo, reproducirlo, distribuirlo, exhibirlo y comunicarlo en el país y en el extranjero mediante medios impresos y electrónicos. Asimismo, asumen el compromiso sobre cualquier litigio o reclamación relacionada con derechos de propiedad intelectual, exonerando de responsabilidad a la Editorial Tecnológica de Costa Rica. Además, se establece que los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
References
[1] T. Qiu, T. C. Lee, A. G. Mark, K. I. Morozov, R. Münster, O. Mierka, S. Turek, A. M. Leshansky, and P. Fischer, “Swimming by reciprocal motion at low Reynolds number,” Nat. Commun., vol. 5, 2014.
[2] M. Jabbarzadeh, “Hydrodynamic interactions and motion of bacteria at low Reynolds number,” Ph.D. dissertation, Dept. Math., Univ. of Utah, Salt Lake City, UT, USA, 2018.
[3] J. Edd, S. Payen, B. Rubinsky, M. L. Stoller, and M. Sitti, “Biomimetic propulsion mechanism for a swimming surgical micro-robot,” in Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS), vol. 3, pp. 2583–2588, 2003.
[4] V. Magdanz et al., “IRON Sperm: Sperm-templated soft magnetic microrobots,” Sci. Adv., vol. 6, no. 28, 2020.
[5] A. V. Singh et al., “Sperm cell driven microrobots—Emerging opportunities and challenges for biologically inspired robotic design,” Micromachines, vol. 11, no. 4, 2020.
[6] G. Kósa et al., “Flagellar swimming for medical micro robots: Theory, experiments and application,” in Proc. IEEE/RAS-EMBS Int. Conf. Biomed. Robot. Biomechatronics (BioRob), pp. 258–263, 2008.
[7] R. Mhanna et al., “Artificial bacterial flagella for remote-controlled targeted single-cell drug delivery,” Small, vol. 10, no. 10, pp. 1953–1957, 2014.
[8] I. S. M. Khalil et al., “Magnetic control of potential microrobotic drug delivery systems: Nanoparticles, magnetotactic bacteria and self-propelled microjets,” in Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBS), pp. 5299–5302, 2013.
[9] K. T. Nguyen et al., “A magnetically guided self-rolled microrobot for targeted drug delivery, real-time X-ray imaging, and microrobot retrieval,” Adv. Healthc. Mater., vol. 10, no. 6, 2021.
[10] S. Fusco et al., “Shape-switching microrobots for medical applications: The influence of shape in drug delivery and locomotion,” ACS Appl. Mater. Interfaces, vol. 7, no. 12, pp. 6803–6811, 2015.
[11] D. Jang, J. Jeong, H. Song, and S. K. Chung, “Targeted drug delivery technology using untethered microrobots: A review,” J. Micromech. Microeng., vol. 29, no. 5, 2019.
[12] G. Chatzipirpiridis et al., “Electroforming of implantable tubular magnetic microrobots for wireless ophthalmologic applications,” Adv. Healthc. Mater., vol. 4, no. 2, pp. 209–214, 2015.
[13] F. Ullrich et al., “Mobility experiments with microrobots for minimally invasive intraocular surgery,” Invest. Ophthalmol. Vis. Sci., vol. 54, no. 5, pp. 2853–2863, 2013.
[14] Z. Ren et al., “Soft-bodied adaptive multimodal locomotion strategies in fluid-filled confined spaces,” Sci. Adv., vol. 7, no. 24, 2021.
[15] H. W. Huang et al., “Adaptive locomotion of artificial microswimmers,” Sci. Adv., vol. 5, no. 1, 2019.
[16] J. Lighthill, “Flagellar hydrodynamics,” SIAM Rev., vol. 18, no. 2, pp. 161–230, 1976.
[17] E. M. Purcell, “Life at low Reynolds number,” Am. J. Phys., vol. 45, no. 1, pp. 3–11, 1977.
[18] S. Mohanty et al., “Bidirectional propulsion of arc-shaped microswimmers driven by precessing magnetic fields,” Adv. Intell. Syst., vol. 2, no. 7, 2000064, 2020.
[19] Z. Liu, F. Qin, and L. Zhu, “Actuating a curved elastic filament for bidirectional propulsion,” Phys. Rev. Fluids, vol. 5, no. 5, 2020.
[20] C. H. Wiggins and R. E. Goldstein, “Flexive and propulsive dynamics of elastica at low Reynolds number,” Phys. Rev. Lett., vol. 80, no. 17, pp. 3879–3882, 1998.
[21] E. Lauga, “Floppy swimming: Viscous locomotion of actuated elastica,” Phys. Rev. E, vol. 75, no. 4, 2007.
[22] T. S. Singh, P. Singh, and R. D. S. Yadava, “Effect of interfilament hydrodynamic interaction on swimming performance of two-filament microswimmers,” Soft Matter, vol. 14, no. 19, pp. 7748–7757, 2018.
[23] W. H. Zurek, “Sub-Planck structure in phase space and its relevance for quantum decoherence,” New J. Phys., vol. 2, no. 10, 2000.
[24] Z. Peng, G. J. Elfring, and O. S. Pak, “Maximizing propulsive thrust of a driven filament at low Reynolds number via variable flexibility,” Soft Matter, vol. 13, no. 12, pp. 2339–2346, 2017.
[25] Z. Liu, F. Qin, L. Zhu, R. Yang, and X. Luo, “Effects of the intrinsic curvature of elastic filaments on the propulsion of a flagellated microrobot,” Phys. Fluids, vol. 32, no. 7, 2020.
[26] O. S. Pak and E. Lauga, “Theoretical models in low-Reynolds-number locomotion,” Soft Matter, vol. 10, no. 1, pp. 401–414, 2014.
[27] R. Dreyfus, J. Baudry, M. L. Roper, M. Fermigier, and H. A. Stone, “Microscopic artificial swimmers,” Nature, vol. 437, pp. 862–865, 2005.
[28] T. S. Yu, E. Lauga, and A. E. Hosoi, “Experimental investigations of elastic tail propulsion at low Reynolds number,” Phys. Fluids, vol. 18, no. 9, 2006.
[29] O. S. Pak and E. Lauga, “Generalized squirming motion of a sphere,” Journal of Engineering Mathematics, vol. 88, no. 1, pp. 1–28, 2014.
[30] M. Gazzola, M. Argentina, and L. Mahadevan, “Gait and speed selection in slender inertial swimmers,” Proceedings of the National Academy of Sciences of the United States of America (PNAS), vol. 111, no. 36, pp. 13695–13700, 2014.