Predictive diagnosis of power transformers through dielectric oil analysis
Main Article Content
Abstract
This study examines the state of dielectric oil in power transformers to identify internal problems that could impact their functionality. The primary issue is the degradation of the oil and its impact on electrical insulation, perhaps resulting in partial discharges or severe thermal failures. To resolve this issue, multiple diagnostic techniques were employed, including Dornenburg, Duval Triangle, and Rogers, alongside the examination of dissolved gases and the physical and chemical features of the oil. The methodology involved analyzing ten oil samples to assess the concentrations of gases including acetylene, ethylene, carbon monoxide, and carbon dioxide, along with physicochemical properties such as dielectric strength, power factor, and water content. The results suggested that certain samples reveal indications of partial or low-energy discharges, whilst others demonstrate significant thermal flaws or high-energy discharges. The concordance among the various methodologies employed corroborates the diagnostic reliability and indicates substantial deterioration in specific transformers.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación y pueda editarlo, reproducirlo, distribuirlo, exhibirlo y comunicarlo en el país y en el extranjero mediante medios impresos y electrónicos. Asimismo, asumen el compromiso sobre cualquier litigio o reclamación relacionada con derechos de propiedad intelectual, exonerando de responsabilidad a la Editorial Tecnológica de Costa Rica. Además, se establece que los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
References
[1] Ó. Núñez-Mata, G. Gómez-Ramírez, F. Acuña-Rojas y C. Gonzalez-Solis, «Metodología para Evaluar la Condición de Transformadores Eléctricos de Potencia Basada en un Índice de Salud,» Ingeniería, vol. 33, nº 1, pp. 34-47, 2023.
[2] H. de-Faria, J. G. Spir-Costa y J. L. Mejia-Olivas, «A review of monitoring methods for predictive maintenance of electric power transformers based on dissolved gas analysis,» Renewable and Sustainable Energy Reviews, vol. 46, nº https://doi.org/10.1016/j.rser.2015.02.052, pp. 201-209, 2015.
[3] C. Collazos, V. Arroyo, M. Chauca, J. Ramos, J. Morales y R. Cuba, «Characterization of Faults in Power Transformers Based on Oil Chromatographic Analysis in the Coastal Zone,» de 11th International Conference on Information and Electronics Engineering (ICIEE 2022), Online. DOI 10.1088/1742-6596/2261/1/012002, 2022.
[4] M. Duval, «Fault gases formed in oil-filled breathing EHV power transformers- The interpretation of gas analysis data,» de IEEE PAS conf., Paper No C 74 476-8, 1974.
[5] M. Duval y J. Dukarm, «Improving the reliability of transformer gas-in-oil diagnosis,» IEEE Electrical Insulation Magazine, vol. 21, nº DOI: 10.1109/MEI.2005.1489986, pp. 21-27, 2005.
[6] O. Shutenko y O. Kulyk, «Recognition of low-temperature overheating in power transformers by dissolved gas analysis,» Electrical Engineering, vol. 104, nº https://doi.org/10.1007/s00202-021-01465-5, pp. 2109-2121, 2022.
[7] E. Dornenburg y W. Strittmatter, «Monitoring oil-cooled transformers by gas-analysis,» Brown Boveri Review, vol. 61, pp. 238-247, 1974.
[8] R. Rogers, «IEEE and IEC codes to interpret incipient faults in transformers using gas in oil analysis,» IEEE Transactions on Electrical Insulation, vol. 13, pp. 349-354, 1978.
[9] O. Gouda, S. El-Hoshy y H. Tamaly, «Condition assessment of power transformers based on dissolved gas analysis,» IET Generation, Transmission & Distribution, vol. Vol.13 Iss. 12, nº doi: 10.1049/iet-gtd.2018.6168, pp. 2299-2310, 2019.
[10] Ó. Nuñez-Mara, F. Acuña-Rojas, C. González-Solís y G.-R. Gustavo, «Assessment of Power Transformers using a Methodology Based on Health Indices,» de IEEE International Conference on Automation/XXIV Congress of the Chilean Association of Automatic Control (ICA-ACCA) , 978-1-6654-0127-2/21, 2021.
[11] Institute of Electrical and Electronics Engineers, «IEEE Guide for the Interpretation of Gases Generated in Mineral Oil-Immersed Transformers,» IEEE Std C57.104-2019, vol. doi: 10.1109/IEEESTD.2019.8890040, pp. 1-98, 2019.
[12] International Electrotechnical Commission, «Oil-filled electrical equipment - Sampling of free gases and analysis of free and dissolved gases in mineral oils and other insulating liquids - Guidance,» IEC Standard 60567:2023, 2023.
[13] S. Bazi, H. Nhaila y M. El Khaili, «Artificial Intelligence for Diagnosing Power Transformer Faults,» de 4th International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET) , DOI: 10.1109/IRASET60544.2024.10548561, 2024.
[14] L. Jin, D. Kim, K. Y. Chan y A. Abu-Siada, «Deep Machine Learning-Based Asset Management Approach for Oil- Immersed Power Transformers Using Dissolved Gas Analysis,» IEEE Access, vol. 24, nº doi: 10.1109/ACCESS.2024.3366905, pp. 27794-27809, 2024.
[15] Suwarno, H. Sutikno, R. Azis Prasojo y A. Abu-Siada, «Machine learning based multi-method interpretation to enhance dissolved gas analysis for power transformer fault diagnosis,» Heliyon, vol. 10, nº Issue 4, e25975, 2024.
[16] G. Jiménez-Araya and G. A. Gómez-Ramírez, “Comportamiento de los aislamientos sólidos de transformadores de potencia en condiciones ambientales no controladas,” Tecnología en Marcha, vol. 29, no. 3, pp. 99–116, 2016. [Online]. Available: http://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S0379-39822016000300099. doi: 10.18845/tm.v29i3.2891.
[17] L. D. Acuña-Barrantes and G. A. Gómez-Ramírez, “Metodología indirecta para la estimación de vida útil residual de transformadores de potencia a partir de la evaluación de los materiales dieléctricos,” Tecnología en Marcha, vol. 33, no. 3, pp. 45–56, 2020. [Online]. Available: http://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S0379-39822020000300045. doi: 10.18845/tm.v33i3.4485.