Predictive diagnosis of power transformers through dielectric oil analysis

Main Article Content

Juan José Montero-Jiménez
Gustavo Adolfo Gómez-Ramírez
Fabricio Jorge Umaña-Blanco
Gabriel Andres Barrientos-Bravo
José Francisco Pérez-Guardiola

Abstract

This study examines the state of dielectric oil in power transformers to identify internal problems that could impact their functionality.  The primary issue is the degradation of the oil and its impact on electrical insulation, perhaps resulting in partial discharges or severe thermal failures.  To resolve this issue, multiple diagnostic techniques were employed, including Dornenburg, Duval Triangle, and Rogers, alongside the examination of dissolved gases and the physical and chemical features of the oil.  The methodology involved analyzing ten oil samples to assess the concentrations of gases including acetylene, ethylene, carbon monoxide, and carbon dioxide, along with physicochemical properties such as dielectric strength, power factor, and water content.  The results suggested that certain samples reveal indications of partial or low-energy discharges, whilst others demonstrate significant thermal flaws or high-energy discharges.  The concordance among the various methodologies employed corroborates the diagnostic reliability and indicates substantial deterioration in specific transformers.

Article Details

How to Cite
Montero-Jiménez, J. J., Gómez-Ramírez, G. A., Umaña-Blanco, F. J., Barrientos-Bravo, G. A., & Pérez-Guardiola , J. F. (2025). Predictive diagnosis of power transformers through dielectric oil analysis. Tecnología En Marcha Journal, 39(1), Pág. 14–28. https://doi.org/10.18845/tm.v39i1.7861
Section
Artículo científico

References

[1] Ó. Núñez-Mata, G. Gómez-Ramírez, F. Acuña-Rojas y C. Gonzalez-Solis, «Metodología para Evaluar la Condición de Transformadores Eléctricos de Potencia Basada en un Índice de Salud,» Ingeniería, vol. 33, nº 1, pp. 34-47, 2023.

[2] H. de-Faria, J. G. Spir-Costa y J. L. Mejia-Olivas, «A review of monitoring methods for predictive maintenance of electric power transformers based on dissolved gas analysis,» Renewable and Sustainable Energy Reviews, vol. 46, nº https://doi.org/10.1016/j.rser.2015.02.052, pp. 201-209, 2015.

[3] C. Collazos, V. Arroyo, M. Chauca, J. Ramos, J. Morales y R. Cuba, «Characterization of Faults in Power Transformers Based on Oil Chromatographic Analysis in the Coastal Zone,» de 11th International Conference on Information and Electronics Engineering (ICIEE 2022), Online. DOI 10.1088/1742-6596/2261/1/012002, 2022.

[4] M. Duval, «Fault gases formed in oil-filled breathing EHV power transformers- The interpretation of gas analysis data,» de IEEE PAS conf., Paper No C 74 476-8, 1974.

[5] M. Duval y J. Dukarm, «Improving the reliability of transformer gas-in-oil diagnosis,» IEEE Electrical Insulation Magazine, vol. 21, nº DOI: 10.1109/MEI.2005.1489986, pp. 21-27, 2005.

[6] O. Shutenko y O. Kulyk, «Recognition of low-temperature overheating in power transformers by dissolved gas analysis,» Electrical Engineering, vol. 104, nº https://doi.org/10.1007/s00202-021-01465-5, pp. 2109-2121, 2022.

[7] E. Dornenburg y W. Strittmatter, «Monitoring oil-cooled transformers by gas-analysis,» Brown Boveri Review, vol. 61, pp. 238-247, 1974.

[8] R. Rogers, «IEEE and IEC codes to interpret incipient faults in transformers using gas in oil analysis,» IEEE Transactions on Electrical Insulation, vol. 13, pp. 349-354, 1978.

[9] O. Gouda, S. El-Hoshy y H. Tamaly, «Condition assessment of power transformers based on dissolved gas analysis,» IET Generation, Transmission & Distribution, vol. Vol.13 Iss. 12, nº doi: 10.1049/iet-gtd.2018.6168, pp. 2299-2310, 2019.

[10] Ó. Nuñez-Mara, F. Acuña-Rojas, C. González-Solís y G.-R. Gustavo, «Assessment of Power Transformers using a Methodology Based on Health Indices,» de IEEE International Conference on Automation/XXIV Congress of the Chilean Association of Automatic Control (ICA-ACCA) , 978-1-6654-0127-2/21, 2021.

[11] Institute of Electrical and Electronics Engineers, «IEEE Guide for the Interpretation of Gases Generated in Mineral Oil-Immersed Transformers,» IEEE Std C57.104-2019, vol. doi: 10.1109/IEEESTD.2019.8890040, pp. 1-98, 2019.

[12] International Electrotechnical Commission, «Oil-filled electrical equipment - Sampling of free gases and analysis of free and dissolved gases in mineral oils and other insulating liquids - Guidance,» IEC Standard 60567:2023, 2023.

[13] S. Bazi, H. Nhaila y M. El Khaili, «Artificial Intelligence for Diagnosing Power Transformer Faults,» de 4th International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET) , DOI: 10.1109/IRASET60544.2024.10548561, 2024.

[14] L. Jin, D. Kim, K. Y. Chan y A. Abu-Siada, «Deep Machine Learning-Based Asset Management Approach for Oil- Immersed Power Transformers Using Dissolved Gas Analysis,» IEEE Access, vol. 24, nº doi: 10.1109/ACCESS.2024.3366905, pp. 27794-27809, 2024.

[15] Suwarno, H. Sutikno, R. Azis Prasojo y A. Abu-Siada, «Machine learning based multi-method interpretation to enhance dissolved gas analysis for power transformer fault diagnosis,» Heliyon, vol. 10, nº Issue 4, e25975, 2024.

[16] G. Jiménez-Araya and G. A. Gómez-Ramírez, “Comportamiento de los aislamientos sólidos de transformadores de potencia en condiciones ambientales no controladas,” Tecnología en Marcha, vol. 29, no. 3, pp. 99–116, 2016. [Online]. Available: http://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S0379-39822016000300099. doi: 10.18845/tm.v29i3.2891.

[17] L. D. Acuña-Barrantes and G. A. Gómez-Ramírez, “Metodología indirecta para la estimación de vida útil residual de transformadores de potencia a partir de la evaluación de los materiales dieléctricos,” Tecnología en Marcha, vol. 33, no. 3, pp. 45–56, 2020. [Online]. Available: http://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S0379-39822020000300045. doi: 10.18845/tm.v33i3.4485.