Spectroscopic analysis of polymer banknotes from the second series of Costa Rica

Main Article Content

James Andres Ruiz Vasquez
Ernesto Montero Zeledon

Abstract

Counterfeiting of banknotes is a persistent problem in Costa Rica, making it essential to ensure their authenticity for economic security and confidence in the financial system. For this reason, banknotes incorporate various security features, notably fluorescent marks visible only under ultraviolet light. This article aims to study the spectroscopic properties of security marks on Costa Rican banknotes to differentiate counterfeit from authentic banknotes and to establish properties useful for quality control processes. Therefore, fluorescence and infrared spectroscopy techniques were applied to key areas of the banknotes to identify excitation, emission, and absorbance maxima. Results showed similar fluorescent emission patterns across different denominations, although variations in intensity were observed in different areas of the same banknote. Additionally, the identified characteristics of the banknote substrate were consistent with the specified material. This analysis contributes to improving the detection of counterfeit banknotes and authentication methods, as well as to establishing a relevant line of research at the national level.

Article Details

How to Cite
Ruiz Vasquez, J. A., & Montero Zeledon, E. (2025). Spectroscopic analysis of polymer banknotes from the second series of Costa Rica. Tecnología En Marcha Journal, 39(1), Pág. 116–129. https://doi.org/10.18845/tm.v39i1.7860
Section
Artículo científico

References

[1] L. G Ramírez Rivera y R. L. Guerrero Macías, “Características de seguridad en el papel moneda mexicano”, Skopein: La justicia en manos de la Ciencia, no. 21, pp. 28-37, 2020. https://dialnet.unirioja.es/servlet/articulo?codigo=7701850

[2] Banco Central de Costa Rica, “Numerario presuntamente falso”, 2024. https://www.bccr.fi.cr/billetes-y-monedas/seguridades/contra-la-falsificación-de-numerario [Ingresado el: 23/07/2024].

[3] M. Mann, S. K. Shukla, y S. Gupta, “A comparative study on security features of banknotes of various countries”, International Journal of Multidisciplinary Research and Development, vol. 2, no. 6, pp. 83–91, 2015.

[4] M. B. Chacón Hidalgo, Del papel moneda a los billetes de banco en Costa Rica (siglo XVIII-2018), 1ra ed. San José, Costa Rica: Fundación Museos Banco Central de Costa Rica, 2019.

[5] K. Corbin, “Falsificación de Polímeros: Ni Sencilla, Ni Barata, Ni Eficaz”, Currency News, vol. 20, no. 10, p. 8, 2022.

[6] R. Ferrero y B. Montrucchio, “Banknote identification through unique fluorescent properties”, IEEE Transactions on Dependable and Secure Computing, vol. 21, no. 2, pp. 1–12, Mar. 2024. https://doi.org/10.1109/TDSC.2023.3267166

[7] H. Wang y L. Sun, “Materials and Society: Functional Chemicals and Materials in Banknote and Security Paper”, Accounts of materials research, vol. 2, no. 1, pp. 1–6, Jan. 2021. https://doi.org/10.1021/accountsmr.0c00071

[8] A. R. Novais Rodrigues, F. L. Melquiades, C. R. Appoloni, y E. N. Marques, “Characterization of Brazilian banknotes using portable X-ray fluorescence and Raman spectroscopy”, Forensic Science International, vol. 302, p. 109872, Sep. 2019. https://doi.org/10.1016/j.forsciint.2019.06.030

[9] M. Mikulicova, O. Zimek, y V. Kresalek, “FLUORESCENCE OF SELECTED POLYMER BANKNOTES”, Proceedings of the 30th DAAAM International Symposium, pp. 746-752, Jan. 2019. https://doi.org/10.2507/30th.daaam.proceedings.102

[10] E. Sonnex, M. J. Almond, J. V. Baum, y J. W. Bond, “Identification of forged Bank of England £20 banknotes using IR spectroscopy”, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, vol. 118, pp. 1158–1163, Jan. 2014. https://doi.org/10.1016/j.saa.2013.09.115

[11] R. M. Correia et al., “Banknote analysis by portable near infrared spectroscopy”, Forensic chemistry, vol. 8, pp. 57–63, May 2018. https://doi.org/10.1016/j.forc.2018.02.003

[12] V. da Silva Oliveira, R. S. Honorato, F. A. Honorato, y C. F. Pereira, “Authenticity assessment of banknotes using portable near infrared spectrometer and chemometrics”, Forensic science international, vol. 286, pp. 121–127, May 2018. https://doi.org/10.1016/j.forsciint.2018.03.001

[13] K. Itrić, M. Vukoje, y D. Banić, “FT-IR spectroscopy as a discrimination method for establishing authenticity of euro banknotes”, Acta graphica, vol. 29, no. 2, pp. 27–30, Jan. 2019. https://doi.org/10.25027/agj2017.28.v29i2.156

[14] P. Kumar et al., “Comparative Analysis of Security Features in Banknotes Across Various Global Economies using VSC®-8000/HS”, International Journal For Multidisciplinary Research, vol. 5, no. 5, Oct. 2023. https://doi.org/10.36948/ijfmr.2023.v05i05.7717

[15] J. Mutanen, T. Jaaskelainen, y J. P. S. Parkkinen, “Luminescent Security Properties of Banknotes”, Society for Imaging Science and Technology: Image Processing, Image Quality, Image Capture, Systems Conference, pp. 421–424, 2003.

[16] E. Hecht, Optics, 5th ed. Pearson Education, 2017.

[17] W. D. Callister, Materials Science and Engineering: An Introduction, 10ma ed., Hoboken, NJ: Wiley, 2018.

[18] A. Aguirre-Flores, “Espectroscopía Uv-visible (Uv-Vis).”, 2018. [En línea]. https://enengiedublog.wordpress.com/2018/01/29/espectroscopia-uv-visible-uv-vis/ [Ingresado el 14/08/2024].

[19] S. Kasap, Principles of Electronic Materials and Devices, 4ta ed., Columbus, OH: McGraw-Hill US Higher Ed USE, 2018.

[20] J. Jakob, “Polymeric Banknotes”, Tesis para el grado de Bachiller en Ingeniería Informática, Tomas Bata University, Zlín, República Checa, 2019.

[21] S. Constantakis, Ed., “Fluorescence”, World of Forensic Science, vol. 1. Farmington Hills, MI: Gale, pp. 307–308, 2016.

[22] R. Giri, P. Bhattarai, S. P. Chimouriya, and B. R. Ghimire, “Examination of Security Features in Nepali Currency of Denomination Rs. 500 and Rs. 1000 Using Video Spectral Comparator-6000”, Journal of Nepal Physical Society, vol. 7, no. 4, pp. 36–42, Dec. 2021. https://doi.org/10.3126/jnphyssoc.v7i4.42929

[23] R. M. O. Mendoza, Elementary Organic Spectroscopy. Ashland: Arcler Press, 2019.

[24] S. Constantakis, Ed., “Spectroscopy”, World of Forensic Science, vol. 2. Farmington Hills, MI: Gale, pp. 634–638, 2016.

[25] M. Hof y R. Macháň, “Basics of Optical Spectroscopy”, Handbook of Spectroscopy, pp. 31–38, 2014.

[26] R Foundation for Statistical Computing, “R: A Language and Environment for Statistical Computing”, v.4.4.1, Vienna, Austria, 2024.

[27] H. Wickham et al., “Welcome to the tidyverse”, Journal of Open Source Software, vol. 4, no. 43, p. 1686, Nov. 2019. https://doi.org/10.21105/JOSS.01686

[28] P. J. Aphalo, “ggpmisc: Miscellaneous Extensions to ‘ggplot2’”, 2024.

[29] P. J. Aphalo, “The r4photobiology suite”, UV4Plants Bulletin, vol. 2015, no. 1, pp. 21-29, 2015. https://doi.org/10.19232/uv4pb.2015.1.14

[30] C. Sievert, Interactive Web-Based Data Visualization with R, plotly, and shiny, Chapman and Hall/CRC, 2020.

[31] B. C. Smith, “The Infrared Spectra of Polymers III: Hydrocarbon Polymers”, Spectroscopy, vol. 36, no. 11, pp. 22–25, 2021. https://doi.org/10.56530/spectroscopy.mh7872q7