Optimization of the micropropagation protocol for Fragaria × ananassa varieties cultivated in the northern region of Cartago

Main Article Content

Alison Mary Salas Campos
Jason Perez-Chavez
Giovanni Garro-Monge

Abstract

Strawberry is one of the most important crops both economically and nutritionally. However, it faces several challenges due to pests such as rootworms, cutworms, and mites, which affect its yield and quality. The conventional propagation method using runners involves high labor costs and the risk of disease transmission, making the in vitro introduction of achenes a crucial alternative. Therefore, different treatments are evaluated, such as exposure to radiation, incubation at low temperatures, variations in environmental conditions, and different sodium hypochlorite doses with varied exposure times. In vitro micropropagation emerges as a solution for producing pathogen-free clones and improving genetic traits, processes that require the use of growth regulators and amino acids, whose effectiveness depends on factors such as dose, explant type, and environmental conditions. To optimize these parameters, several explants were tested, with the lower leaf and the bud proving to be the most efficient for callus induction due to their morphology and higher cell density. Regarding culture media, Medium 3 stood out for offering the best explant survival rate, at 26%, although no significant differences were observed between the media. In the proliferation stage, Medium 3 showed the best performance by promoting regeneration and the formation of shoots, which exhibited totipotent and fibrous structures.

Article Details

How to Cite
Salas Campos, A. M., Perez-Chavez, J., & Garro-Monge, G. (2025). Optimization of the micropropagation protocol for Fragaria × ananassa varieties cultivated in the northern region of Cartago. Tecnología En Marcha Journal, 38(4), Pág. 22–33. https://doi.org/10.18845/tm.v38i4.7822
Section
Artículo científico

References

[1] L. R. da Silva et al., «Strawberries in a warming world: examining the ecological niche of Fragaria×ananassa Duch – Across different climate scenarios», Journal of Berry Research, vol. 14, n.o 3, pp. 193-208, ene. 2024, doi: 10.3233/JBR-240012.

[2] H.-H. Chung y H.-Y. Ouyang, «Use of Thidiazuron for High-Frequency Callus Induction and Organogenesis of Wild Strawberry (Fragaria vesca)», Plants, vol. 10, n.o 1, Art. n.o 1, dic. 2020, doi: 10.3390/plants10010067.

[3] Instituto Nacional de Estadística y Censos, “Cultivos agrícolas, forestales y ornamentales” en VI Censo Nacional Agropecuario, no1 . tomo 2. San José, Costa Rica: INEC, 2015.

[4] Organización para la Alimentación y la Agricultura, “Cultivos y productos de ganadería”, FAOSTAT, https://www.fao.org/faostat/en/#data/QCL (Consultado 20 dic., 2024).

[5] E. Cadet, “Control de plagas de fresa orgánica”, Instituto Nacional de Aprendizaje, https://alternativasaplaguicidas.cr/wp-content/uploads/2024/06/Manual-FRESA-CNEAO.pdf (Consultado 25 nov., 2024).

[6] R. Puscan, E. R. V. Castro, y C. E. M. Chanamé, «Combined effect of cytokinins on the in vitro propagation of three strawberry cultivars», Rev. Caatinga, vol. 37, pp. 1-10, sept., 2024. Consultado: 30 nov. 2024. [En línea]. Disponible: doi: https://doi.org/10.1590/1983-21252024v3712180rc.

[7] M. Gerdakaneh, A.-A. Mozafari, A. Sioseh-Mardah, y B. Sarabi, «Effects of different amino acids on somatic embryogenesis of strawberry (Fragaria × ananassa Duch.)», Acta Physiologiae Plantarum, vol. 33, n.o 5, Art. n.o 5, feb. 2011, doi: 10.1007/s11738-011-0725-9.

[8] M. Gerdakaneh y A. A. Mozaffari, «Plant Regeneration via Direct Somatic Embryogenesis in Three Strawberry (Fragaria ananassa Duch.) Cultivars», Agrotechniques in Industrial Crops, sep. 2021, doi: 10.22126/atic.2021.6936.1022.

[9] W. Q. Pang, S. T. Tan, M. F. Mad’ Atari, I. C. K. Yoong, y S. Subramaniam, «Establishment of an efficient micropropagation protocol for Cameron Highlands White Strawberry (Fragaria x ananassa) using a light emitting diode (LED) system», South African Journal of Botany, vol. 157, pp. 189-200, jun. 2023, doi: 10.1016/j.sajb.2023.03.061.

[10] A. M. Khalifa, E. Abd-ElShafy, R. Abu-Khudir, y R. M. Gaafar, «Influence of gamma radiation and phenylalanine on secondary metabolites in callus cultures of milk thistle (Silybum marianum L.)», J Genet Eng Biotechnol, vol. 20, p. 166, dic. 2022, doi: 10.1186/s43141-022-00424-2.

[11] S. Yeasmin et al., «In vitro Regeneration of Strawberry Plant from Leaf Explants via Callus Induction», Plant Tissue Culture and Biotechnology, vol. 32, n.o 1, Art. n.o 1, jun. 2022, doi: 10.3329/ptcb.v32i1.60473.

[12] A. Kessel Domini, «Mejora genética de la fresa (Fragaria ananassa Duch.), a través de métodos biotecnológicos», Accedido: 4 de diciembre de 2024. [En línea]. Disponible en: http://scielo.sld.cu/scielo.php?pid=S0258-59362012000300005&script=sci_arttext&tlng=en

[13] P. Lohasupthawee y P. Chomboon, «Mass Propagation System of Strawberry (Fragaria × ananassa) Microshoots by Liquid Shake Culture», Curr. Appl. Sci. Technol., may 2021, doi: 10.55003/cast.2022.01.22.008.

[14] B. C. Sarker, D. D. Archbold, R. L. Geneve, y S. T. Kester, «Rapid In Vitro Multiplication of Non-Runnering Fragaria vesca Genotypes from Seedling Shoot Axillary Bud Explants», Horticulturae, vol. 6, n.o 3, Art. n.o 3, sep. 2020, doi: 10.3390/horticulturae6030051.

[15] A. Thakur, A. K. Nath, y V. Sharma, «Genetic Homogeneity Analysis in Tissue Culture Raised Fragaria ananassa Duch. Revealed Through PCR Based Molecular Markers», Applied Fruit Science, vol. 66, n.o 2, Art. n.o 2, dic. 2023, doi: 10.1007/s10341-023-00995-5.

[16] Y. Zhang, «Investigation of methylome, transcriptome and phenotypic changes induced by temperature during asexual and sexual reproduction in the woodland strawberry (Fragaria vesca)», Doctoral thesis, 2022. Accedido: 11 de diciembre de 2024. [En línea]. Disponible en: https://www.duo.uio.no/handle/10852/98372

[17] A. Atteh y A. Adeyeye, «Effect of Low Gamma Irradiation on the Germination and Morphological Characteristics of Broad Beans (Vicia faba L.), Mung Beans (Vigna radiata L.), and Peas (Pisum sativum L.) Seedlings», Natural Resources, vol. 13, n.o 5, Art. n.o 5, jun. 2022, doi: 10.4236/nr.2022.135008.

[18] F. Akter et al., «An Efficient Agrobacterium-Mediated Genetic Transformation System for Gene Editing in Strawberry (Fragaria × ananassa)», Plants, vol. 13, n.o 5, Art. n.o 5, feb. 2024, doi: 10.3390/plants13050563.

[19] E. Mukherjee y S. Gantait, «Strawberry biotechnology: A review on progress over past 10 years», Scientia Horticulturae, vol. 338, p. 113618, dic. 2024, doi: 10.1016/j.scienta.2024.113618.

[20] M. Zhang, A. Wang, M. Qin, X. Qin, S. Yang, S. Su, Y. Sun, and L. Zhang, “Direct and Indirect Somatic Embryogenesis Induction in Camellia oleifera Abel,” Front. Plant Sci., vol. 12, p. 644389, 2021, doi: 10.3389/fpls.2021.644389.

[21] D. Mc-Caughey-Espinoza, G. Ayala-Astorga, C. García-Baldenegro, N. Buitimea-Cantúa, G. Buitimea-Cantúa, y A. Ochoa-Meza, «Germinación in vitro e inducción de callo y raíz en Bursera laxiflora S. Watson», Abanico Agroforestal, vol. 2, n.o 0, Art. n.o 0, 2020.

[22] M. K. Biswas, R. Islam, y M. Hossain, «Somatic embryogenesis in strawberry (Fragaria sp.) through callus culture», Plant Cell, Tissue and Organ Culture, vol. 90, n.o 1, Art. n.o 1, jul. 2007, doi: 10.1007/s11240-007-9247-y.

[23] A. M. Husaini, J. A. Mercado, J. A. Teixeira, y J. G. Schaart, “Review of Factors Affecting Organogenesis, Somatic Embryogenesis and Agrobacterium tumefaciens Mediated Transformation of Strawberry”, en Genes, Genomes and Genomics, A. M. Husaini y J. A. Mercado, Eds. Kita gun: Japón; Glob. Sci. Bk., 2011, cap. 1, pp. 1-11. [En línea]. Disponible: https://www.researchgate.net/profile/Amjad-Husaini/publication/283796600_Genomics_Transgenics_Molecular_Breeding_and_Biotechnology_of_Strawberry/links/5647c50708ae54697fbbf8e6/Genomics-Transgenics-Molecular-Breeding-and-Biotechnology-of-Strawberry.pdf#page=9

[24] D. B. Shokaeva, N. V. Solovykh, y D. Skovorodnikov, “In Vitro Selection and Strawberry Plant Regeneration for Developing Resistance to Botrytis cinerea Pers., Phytophthora cactorum Leb. et Cohn (Schroet) and Salinity Stress”, en Genes, Genomes and Genomics, A. M. Husaini y J. A. Mercado, Eds. Kita gun: Japón; Glob. Sci. Bk., 2011, cap. 13, pp. 115-125. [En línea]. Disponible: https://www.academia.edu/24912764/In_Vitro_Selection_and_Strawberry_Plant_Regeneration_for_Developing_Resistance_to_Botrytis_cinerea_Pers_Phytophthora_cactorum_Leb_et_Cohn_Schroet_and_Salinity_Stress?auto=download