Performance characterization on embedded systems for Edge AI person-detection models

Main Article Content

Laura Cabrera-Quiros
Kimberly Orozco-Retana

Abstract

This paper presents a hardware performance characterization for two Edge AI platforms: Raspberry Pi 4 and NVIDIA Jetson Nano, for the task of automatic people detection using a deep learning model. For comparison purposes, we use the MLPerf Inference Benchmark evaluation system. The characterization considers the results from an SSD-Mobilenet object-detection model using two different datasets, one with 80 different object classes and another with only people. Comparison metrics consider model accuracy, latency, queries processed per second, and samples processed per second under the evaluation of different execution scenarios.

Article Details

How to Cite
Cabrera-Quiros, L., & Orozco-Retana, K. (2025). Performance characterization on embedded systems for Edge AI person-detection models. Tecnología En Marcha Journal, 38(4), Pág. 191–201. https://doi.org/10.18845/tm.v38i4.7754
Section
Artículo científico

References

[1] B. Varghese, N. Wang, D. Bermbach, C.-H. Hong, E. D. Lara, W. Shi y C. Stewart, «A Survey on Edge Performance Benchmarking,» ACM Computing Surveys, vol. 54, nº 3, pp. 1-33, Abril 2022.

[2] Z. Zhou, K. Chen, Z. Shi, Y. Guo y J. Ye, «Object Detection in 20 Years: A Survey,» Proceedings of the IEEE, vol. 111, nº 3, pp. 257-276, Marzo 2023.

[3] V. J. Reddi, C. Cheng, D. Kanter, P. Mattson, G. Schmuelling, C.J. Wu, B. Anderson, M. Breughe, M. Charlebois, W. Chou et al., «MLPerf Inference Benchmark,» ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA), pp. 446-459, 2020.

[4] E. Upton y G. Halfacree, Raspberry Pi user guide, John Wiley & Sons, 2016.

[5] F. N. Uzun, M. Kayrici y B. Akkuzu, «Nvidia Jetson Nano Development Kit,» Programmable Smart Microcontroller Cards, p. 82, 2021.

[6] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu y A. C. Berg, «SSD: Single Shot MultiBox Detector,» de European conference on computer vision, 2016.

[7] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto y H. Adam, «MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications,» Publisher: arXiv Version Number: 1, 2017. [En línea]. Available: https://arxiv.org/abs/1704.04861.

[8] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár y C. L. Zitnick, «Microsoft COCO: Common Objects in Context,» Computer Vision – ECCV 2014, vol. 8693, pp. 740-755, 2014.

[9] «COCO dataset - Common Objects in Context,» [En línea]. Available: https://cocodataset.org/#home. [Último acceso: Julio 2025].

[10] R. Padilla, S. L. Netto y E. Da Silva, «A survey on performance metrics for object-detection algorithms,» de International conference on systems, signals and image processing (IWSSIP, 2020.

[11] W. Wang, W. Hong, F. Wang y J. Yu, «GAN-Knowledge Distillation for One-Stage Object Detection,» IEEE Access, vol. 8, pp. 60719--60727, 2020.

[12] Y. Hu, N. Chen, Y. Hou, X. Lin, B. Jing y P. Liu, «Lightweight deep learning for real-time road distress detection on mobile devices,» Nature Communications, vol. 16, nº 1, 2025.

[13] NVIDIA Developer, «Documentation Jetson Nano 2GB Developer Kit,» [En línea]. Available: https://developer.nvidia.com/embedded/learn/jetson-nano-2gb-devkit-user-guide. [Último acceso: Julio 2025].

[14] Y.-H. Chang, J. Pu, W.-m. Hwu y J. Xiong, «MLHarness: A scalable benchmarking system for MLCommons,» BenchCouncil Transactions on Benchmarks, Standards and Evaluations, vol. 1, 2021.