Computational study of the behavior of a water heater with a type C resistance
Main Article Content
Abstract
The main purpose of this work is to computationally study the fluidic and thermal behavior of water in a water heater with a type C resistance. For this, a multiphysics numerical simulation based on Computational Fluid Dynamics (CFD) was developed, where the Finite Element Method (FEM) is used, and the k-ε turbulent flow model and the equations of thermal energy conservation and Fourier’s law of heat transfer were coupled. As a result of the simulations carried out, the velocity and vorticity profiles of the flow, the pressure drop at the inlet and outlet of the heater, as well as the maximum temperatures reached at the outlet of the heater for different combinations of heat power and flow rates were obtained. Finally, the combinations of power and flow rates that prevent a user of the heater from suffering skin injuries due to the outlet water temperature were determined.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación y pueda editarlo, reproducirlo, distribuirlo, exhibirlo y comunicarlo en el país y en el extranjero mediante medios impresos y electrónicos. Asimismo, asumen el compromiso sobre cualquier litigio o reclamación relacionada con derechos de propiedad intelectual, exonerando de responsabilidad a la Editorial Tecnológica de Costa Rica. Además, se establece que los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
References
[1] Wattco, “Elementos de Calefacción Industrial,” 2024. [Online]. Available: https://www.wattco.com/es
[2] Aquapower, “Temperature; Technical Drawings - AquaPower AQM 2-1 Operation And Installation,” 2024. [Online]. Available: https://www.manualslib.com/manual/1213569/Aquapower-Aqm-2-1.html
[3] Manuals+, “Manual del usuario del calentador de agua eléctrico Rheem,” 2024. [Online]. Available: https://es.manuals.plus/rheem/rheem-electric-water-heater-manual-pdf
[4] S. F. Ahmed et al., “Recent progress in solar water heaters and solar collectors: A comprehensive review,” Thermal Science and Engineering Progress, vol. 25, 2021, Art. no. 100981. doi: 10.1016/j.tsep.2021.100981.
[5] V. E. Márquez-Baños, J. J. Valencia-López, O. García-Aranda, and C. Heard, “Determinación computacional del coeficiente de transferencia de calor en calentadores eléctricos de flujo continuo, mediante dinámica de fluidos computacional,” Información Tecnológica, vol. 27, no. 5, pp. 151–162, 2016, doi: 10.4067/S0718-07642016000500017.
[6] Z. Paul and P.-M. Masukume, “Efficiency optimization in solar water heaters: A comparative CFD study of design configurations,” Power Engineering and Engineering Thermophysics, vol. 2, no. 4, 2023, doi: 10.56578/peet020405.
[7] A. Parsaei and K. Goudarzi, “Numerical investigation of the performance improvement of instantaneous gas water heater by introducing new geometries for the heat exchanger,” Journal of Building Engineering, vol. 89, 2024, Art. no. 109275, doi: https://doi.org/10.1016/j.jobe.2024.109275.
[8] COMSOL, Introduction to the CFD Module, COMSOL Inc., 2023. [Online]. Available: https://doc.comsol.com/6.2/doc/com.comsol.help.cfd/IntroductionToCFDModule.pdf
[9] J. Claycomb, Mathematical methods for physics: using maple & matlab, 1st ed. Dulles, VA, USA: Mercury Learning & Information, 2018.
[10] S. P. Suresha, G. J. Reddy, and H. Basha, “Turbulent low-Reynolds-number k–ε model effect on buoyancy-driven free convection flow past a vertical cylinder,” Indian Journal of Physics, vol. 98, no. 2, pp. 659–677, Feb. 2024, doi: 10.1007/s12648-023-02797-7.
[11] D. O. A. Cruz and F. T. Pinho, “Turbulent pipe flow predictions with a low Reynolds number k-ε model for drag reducing fluids,” Journal of Non-Newtonian Fluid Mechanics, vol. 114, no. 2–3, pp. 109–148, Sep. 2003, doi: 10.1016/S0377-0257(03)00119-8.
[12] M. T. Schobeiri, Fluid mechanics for engineers: A graduate textbook. Berlin, Germany: Springer, 2010, doi: 10.1007/978-3-642-11594-3.
[13] COMSOL, Heat Transfer Module User’s Guide, COMSOL Inc., 2023. [Online]. Available: https://doc.comsol.com/6.2/doc/com.comsol.help.heat/HeatTransferModuleUsersGuide.pdf
[14] Z. Chai and T. S. Zhao, “Lattice Boltzmann model for the convection-diffusion equation,” Physical Review E, vol. 87, no. 6, Jun. 2013, Art. no. 063309, doi: 10.1103/PhysRevE.87.063309.
[15] COMSOL, Material Library User’s Guide, COMSOL Inc., 2023. [Online]. Available: https://doc.comsol.com/6.2/doc/com.comsol.help.matlib/MaterialLibraryUsersGuide.pdf