Bone tissue processing and sterilization for therapeutic use: preclinical experiments from a technological university
Main Article Content
Abstract
Gamma irradiation is among the most widely used methods of bone sterilization. The usual
standard dose for achieving sterilization is 25 kGy. Although there are international standards for
the main procedures, the general recommendation is to validate them at the local level, so that
they are feasible with the personnel and technical capacities of the country. In this study, porcine
bone tissue samples were treated by chemical disinfection and by sterilization with gamma
irradiation, reducing the microbial load to non-detectable levels, without significantly affecting
the desirable properties of the tissue matrix, which was verified by protein characterization of
collagen and bone morphogenetic proteins (BMPs) and by scanning electron microscopy. This
research demonstrates the ability of Costa Rica Institute of Technology (ITCR) to contribute to
the training of professionals and to provide access to specialized equipment, which allows the
strengthening of tissue banks in the country, and thereby contributing to the development of new
technological strategies for human health.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación y pueda editarlo, reproducirlo, distribuirlo, exhibirlo y comunicarlo en el país y en el extranjero mediante medios impresos y electrónicos. Asimismo, asumen el compromiso sobre cualquier litigio o reclamación relacionada con derechos de propiedad intelectual, exonerando de responsabilidad a la Editorial Tecnológica de Costa Rica. Además, se establece que los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
References
J. Sánchez-Ibañez et al., “Tissue and Cell Donation: Recommendations From an International Consensus Forum,”
in Transplantation Direct, Wolters Kluwer Health, Apr. 2023, p. E1466. doi: 10.1097/TXD.0000000000001466.
I. A. Kirilova et al., “Terminology and conceptual apparatus of tissue donation and tissue banking: interdisciplinary expert consensus (Part 1),” Hirurgia Pozvonochnika, vol. 20, no. 4, pp. 92–98, 2023, doi: 10.14531/
ss2023.4.92-98.
M. Manyalich et al., “European Quality System for Tissue Banking,” Transplant Proc, vol. 41, no. 6, pp. 2035–
, Jul. 2009, doi: 10.1016/j.transproceed.2009.06.157.
Eulogia Kairiyama, Código de prácticas para la esterilización por irradiación de tejidos humanos para uso
clínico. Editorial Tecnológica de Costa Rica, 2013.
P. G. Cimalista de Alencar and I. F. Ventura Vieira, “Bone Banks,” Rev Bras Ortop (Sao Paulo), vol. 45, no. 6,
pp. 524–528, 2010.
N. Chaves-Solano, “Comunicación breve Living donor bone bank: Costa Rican experience (Banco de huesos
a partir de donantes vivos: experiencia costarricense),” 2019.
N. Baseri, A. Meysamie, F. Campanile, A. A. Hamidieh, and A. Jafarian, “Bacterial contamination of bone
allografts in the tissue banks: a systematic review and meta-analysis,” May 01, 2022, W.B. Saunders Ltd. doi:
1016/j.jhin.2021.10.020.
R. Singh and A. Singh, “The potential of radiation sterilized and banked tissue allografts for management of
nuclear casualties,” Cell Tissue Bank, vol. 23, no. 2, pp. 325–334, Jun. 2022, doi: 10.1007/s10561-021-09946-
I. Ilays, S. A. Alsakran, A. B. Fallatah, M. Alyateem, and O. A. Al-Mohrej, “The contamination of allografts in
multi-organ donors: a bone bank experience,” Cell Tissue Bank, vol. 22, no. 3, pp. 499–504, Sep. 2021, doi:
1007/s10561-020-09899-0.
E. Tam, M. McGrath, M. Sladkova, A. AlManaie, A. Alostaad, and G. M. de Peppo, “Hypothermic and cryogenic
preservation of tissue-engineered human bone,” Ann N Y Acad Sci, vol. 1460, no. 1, pp. 77–87, Jan. 2020, doi:
1111/nyas.14264
L. R. Dantas, L. C. Wollmann, P. H. Suss, L. Kraft, V. S. T. Ribeiro, and F. F. Tuon, “Disinfection protocol for
human musculoskeletal allografts in tissue banking using hydrogen peroxide 30%,” Cell Tissue Bank, vol. 22,
no. 4, pp. 643–649, Dec. 2021, doi: 10.1007/s10561-021-09938-4.
L. M. Delgado, A. Pandit, and D. I. Zeugolis, “Influence of sterilisation methods on collagen-based devices
stability and properties,” 2014, Expert Reviews Ltd. doi: 10.1586/17434440.2014.900436.
F. Martínez-Flores, H. Sandoval-Zamora, C. Machuca-Rodriguez, A. Barrera-López, R. García-Cavazos, and J.
A. Madinaveitia-Villanueva, “Banco de piel y tejidos: un modelo operativo para la recuperación y preservación
de aloinjertos de piel y tejidos,” Cir Cir, vol. 84, no. 1, pp. 85–92, 2016, doi: 10.1016/j.circir.2015.06.021.
N. Daras, G. N. Nurick, and T. J. Cloete, “Degradation of the mechanical properties of cortical bone due to
long duration storage,” J Mech Behav Biomed Mater, vol. 157, Sep. 2024, doi: 10.1016/j.jmbbm.2024.106632.
S. Haimi, A. Vienonen, M. Hirn, M. Pelto, V. Virtanen, and R. Suuronen, “The effect of chemical cleansing
procedures combined with peracetic acid-ethanol sterilization on biomechanical properties of cortical bone,”
Biologicals, vol. 36, no. 2, pp. 99–104, Mar. 2008, doi: 10.1016/j.biologicals.2007.06.001.
Q. Qing et al., “Effects of hydrogen peroxide on biological characteristics and osteoinductivity of decellularized and demineralized bone matrices,” J Biomed Mater Res A, vol. 107, no. 7, pp. 1476–1490, Jul. 2019, doi:
1002/jbm.a.36662.
A. Dziedzic-Goclawska, A. Kaminski, I. Uhrynowska-Tyszkiewicz, and W. Stachowicz, “Irradiation as a safety
procedure in tissue banking,” Cell Tissue Bank, vol. 6, no. 3, pp. 201–219, Sep. 2005, doi: 10.1007/s10561-
-0338-x.
N. Yusof, “Advances of radiation sterilisation in tissue banking,” Cell Tissue Bank, vol. 19, no. 2, pp. 175–186,
Jun. 2018, doi: 10.1007/s10561-017-9651-4.
L. A. Calvo-Castro, M. Guerrero-Barrantes, A. Ulloa-Fernández, R. Portuguez-Barboza, C. Centeno-Cerdas,
and M. R. Chaves, “Evaluación de técnicas de procesamiento y almacenamiento de piel cadavérica para
bancos de tejidos Evaluation of skin procurement and storage techniques for Tissue Banking.”
J. Morales-Sánchez, A. Ulloa-Fernández, S. Castro-Piedra, C. Centeno-Cerdas, and L. A. Calvo-Castro,
“Cultivo Celular e Ingeniería de Tejidos: Aplicaciones en Biomedicina,” Revista Tecnología en Marcha, Sep.
, doi: 10.18845/tm.v32i9.4628.
P. Sharpe and A. Miller, “Guidelines for the Calibration of Dosimeters for use in Radiation Processing. NPL
REPORT CIRM 29,” Middlesex, United Kingdom, 2009. [Online]. Available: https://www.researchgate.net/
publication/242694706
ISO 11137-2, “Esterilización de productos para asistencia sanitaria. Parte 3: Establecimiento de la dosis de
esterilización,” 2013.
ISO/TS 11137-4, “Sterilization of health care products -Radiation- Part 4: Guidance on process control,” 2020.
X. Jiang et al., “Method development of efficient protein extraction in bone tissue for proteome analysis,” J
Proteome Res, vol. 6, no. 6, pp. 2287–2294, Jun. 2007, doi: 10.1021/pr070056t.
M. Megías, P. Molist, and M. Pombal, “ Atlas de histología vegetal y animal,” http://mmegias.webs.uvigo.es/
inicio.html.
D. Marshall, M. H. Helfrich, and R. M. Aspden, “Scanning Electron Microscopy of Bone.,” in Bone Research
Protocols. Methods in Molecular Medicine, vol. 80, M. H. Helfrich and S. H. Ralston, Eds., 2003. [Online].
Available: https://doi.org/10.1385/1-59259-366-6:311
J. Sáenz Medina et al., “Modelos experimentales para la investigación y el entrenamiento en trasplante renal,”
Actas Urol Esp, vol. 32, no. 1, pp. 83–90, 2008.
J. Park, S. Kim, and K. Kim, “Bone morphogenetic protein-2 associated multiple growth factor delivery for bone
tissue regeneration,” Mar. 01, 2018, Springer Netherlands. doi: 10.1007/s40005-017-0382-0.
I. Álvarez Saldías, Guía para la operación de bancos de tejidos. Editorial Tecnológica de Costa Rica, 2013