Induction of mutations and plant biotechnology to produce stress-resistant crops with higher yields
Main Article Content
Abstract
Mutations and the genetic variability caused by them play a fundamental role in the genetic
improvement of plants. Mutation induction or mutagenesis represents a rapid and effective
option for the development of new varieties that maintain optimal productivity levels in
challenging agricultural environments. Mutation induction can be carried out using physical
agents, chemical agents, or gene editing tools. The combined use of mutagenesis with in vitro
tissue culture techniques allows for the establishment of efficient and cost-effective selection
strategies. This article provides a brief overview of mutation induction, the most commonly used
techniques for this purpose, and some improvements achieved in various crops in relation to
biotic stress, abiotic stress, and productive yield. Finally, it examines the historical landscape
of genetic improvement through mutation induction in Costa Rica, specifically in the crops of
greatest economic and social relevance to the country.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación y pueda editarlo, reproducirlo, distribuirlo, exhibirlo y comunicarlo en el país y en el extranjero mediante medios impresos y electrónicos. Asimismo, asumen el compromiso sobre cualquier litigio o reclamación relacionada con derechos de propiedad intelectual, exonerando de responsabilidad a la Editorial Tecnológica de Costa Rica. Además, se establece que los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
References
N. Hasan, S. Choudhary, N. Naaz, N. Sharma, R. A. Laskar, “Recent advancements in molecular markerassisted selection and applications in plant breeding programmes”, Journal of Genetic Engineering and
Biotechnology, vol. 19, no. 1, pp. 1-26, 2021. https://doi.org/10.1186/s43141-021-00231-1
V. E. Viana, C. Pegoraro, C. Busanello, A. C. De Oliveira, “Mutagenesis in rice: The basis for breeding a new super
plant”, Frontiers in Plant Science, vol. 10, no. 1326, pp. 1-28, 2019. https://doi.org/10.3389%2Ffpls.2019.01326
Y. Oladosu et al., “Principle and application of plant mutagenesis in crop improvement: A review”, Biotechnology
and Biotechnological Equipment, vol. 30, no. 1, pp. 1-16, 2016. https://doi.org/10.1080/13102818.2015.108733
A. Berry, J. Browne, “Mendel and Darwin”, PNAS, vol. 119, no. 30, pp. 1-10, 2022. https://doi.org/10.1073/
pnas.2122144119
J. J. García Villarroel, “Impacto de las mutaciones en la salud humana: Una revisión actualizada”, Revista
Orbis Tertius UPAL, vol. 7, no. 14, pp. 127-152, 2023. https://doi.org/10.59748/ot.v7i14.140
W. Ma, Y. Zhan, Y. Zhang, C. Mao, X. Xie, Y. Lin, “The biological applications of DNA nanomaterials: Current
challenges and future directions”, Signal Transduction and Targeted Therapy, vol. 6, no. 351, pp. 1-28, 2021.
https://doi.org/10.1038/s41392-021-00727-9
J. Vijg, “From DNA damage to mutations: All roads lead to aging”, Ageing Research Reviews, vol. 68, no.
, pp. 1-12, 2021. https://doi.org/10.1016/j.arr.2021.101316
A. Carusillo, C. Mussolino, “DNA damage: From threat to treatment”, Cells, vol. 9, no. 7, pp. 1-20, 2020. https://
doi.org/10.3390/cells9071665
A. Livnat, A. C. Love, “Mutation and evolution: Conceptual possibilities”, BioEssays, vol. 46, no. 2, pp. 1-12,
https://doi.org/10.1002/bies.202300025
S. Ahmar et al., “Conventional and molecular techniques from simple breeding to speed breeding in crop
plants: Recent advances and future outlook”, International Journal of Molecular Sciences, vol. 21, no. 7, pp.
-24, 2020. https://doi.org/10.3390/ijms21072590
J. Chaudhary et al., “Mutation breeding in tomato: Advances, applicability and challenges”, Plants, vol. 5, no.
, pp. 1-17, 2019. https://doi.org/10.3390/plants8050128
M. de la L. Riviello-Flores et al., “Use of gamma radiation for the genetic improvement of underutilized plant
varieties”, Plants, vol. 11, no. 9, pp. 1-19, 2022. https://doi.org/10.3390%2Fplants11091161
A. Bhoi, B. Yadu, J. Chandra, S. Keshavkant, “Mutagenesis: A coherent technique to develop biotic stress
resistant plants”, Plant Stress, vol. 3, no. 100053, pp. 1-10, 2022. https://doi.org/10.1016/j.stress.2021.100053
F. Li, A. Shimizu, T. Nishio, N. Tsutsumi, H. Kato, “Comparison and characterization of mutations induced
by gamma-ray and carbon-ion radiation in rice (Oryza sativa L.) using whole genome resequencing”, G3
Genes|Genomes|Genetics, vol. 9, no. 11, pp. 3743-3751, 2019. https://doi.org/10.1534/g3.119.400555
G. Yang et al., “Genome-wide comparisons of mutations induced by carbon-ion beam and gamma-rays irradiation in rice via resequencing multiple mutants”, Frontiers in Plant Science, vol. 10, no. 1514, pp. 1-13, 2019.
https://doi.org/10.3389/fpls.2019.01514
R. M. Shelake, D. Pramanik, J. -Y. Kim, “Evolution of plant mutagenesis tools: A shifting paradigm from random
to targeted genome editing”, Plant Biotechnology, vol. 13, pp. 423-445, 2019. https://doi.org/10.1007/s11816-
-00562-z
Q. M. M. Hossen et al., “Development of early flowering, short life-spanned jute (Corchorus spp.) mutant via
ethyl methane sulfonate mutagenesis”, Journal of Crop Science and Biotechnology, vol. 25, pp. 489-500, 2022.
https://doi.org/10.1007/s12892-022-00146-4
A. C. Udage, “Introduction to plant mutation breeding: Different approaches and mutagenic agents”, The
Journal of Agricultural Sciences - Sri Lanka, vol. 16, no. 3, pp. 466-483, 2021. https://doi.org/10.4038/jas.
v16i03.9472
Centro para Investigaciones en Granos y Semillas, “Informe de Labores 2014-2015”, Universidad de Costa
Rica, San Pedro, Costa Rica, 2015. https://cigras.ucr.ac.cr/documentos/category/21-informe-2014-2015
Centro para Investigaciones en Granos y Semillas, “Informe de Labores 2016”, Universidad de Costa Rica,
San Pedro, Costa Rica, 2016. https://cigras.ucr.ac.cr/documentos/category/22-informe-2016
Centro para Investigaciones en Granos y Semillas, “Informe de Labores 2017”, Universidad de Costa Rica,
San Pedro, Costa Rica, 2017. https://cigras.ucr.ac.cr/documentos/category/23-informe-2017
Centro para Investigaciones en Granos y Semillas, “Informe de Labores 2018”, Universidad de Costa Rica,
San Pedro, Costa Rica, 2018. https://cigras.ucr.ac.cr/documentos/category/24-informe-2018
L. Y. Solís-Ramos et al., “Effect of gamma irradiation and selection with fungus filtrate (Rhizoctonia solani Kuhn)
on the in vitro culture of common bean (Phaseolus vulgaris)”, American Journal of Plant Sciences, vol. 6, no.
, pp. 2672-2685, 2015. http://dx.doi.org/10.4236/ajps.2015.616269
A. Bolívar-González, M. Valdez-Melara, A. Gatica-Arias, “Responses of Arabica coffee (Coffea arabica L. var.
Catuaí) cell suspensions to chemically induced mutagenesis and salinity stress under in vitro culture conditions, In Vitro Cellular & Developmental Biology - Plant, vol. 54, pp. 576-589, 2018. https://doi.org/10.1007/s11627-018-9918-x
A. Abdelnour-Esquivel, J. Pérez, M. Rojas, W. Vargas, A. Gatica-Arias, “Use of gamma radiation to induce
mutations in rice (Oryza sativa L.) and the selection of lines with tolerance to salinity and drought”, In Vitro
Cellular & Developmental Biology - Plant, vol. 56, pp. 88-97, 2020. https://doi.org/10.1007/s11627-019-10015-5
A. Gatica-Arias, J. Rodríguez-Matamoros, A. Abdelnour-Esquivel, M. Valdez-Melara, “Determination of the
optimal conditions for mutagenesis induction in a commercial Arabica coffee variety” en Mutation Breeding,
Genetic Diversity and Crop Adaptation to Climate Change, S. Sivasankar, N. Ellis, L. Jankuloski, I. Ingelbrecht,
Eds. Wallingford, CABI, 2021, pp. 213-233. https://doi.org/10.1079/9781789249095.0034
A. Hernández-Soto et al., “Tolerance to aryloxy-phenoxy-propionate (APP) as a model for Lazarroz FL rice in
vitro gamma irradiation variability selection”, bioRxiv, pp. 1-12, 2022. https://doi.org/10.21203/rs.3.rs-1950230/
v2
J. A. Rojas-Chacón, F. Echeverría-Beirute, B. J. Till, A. Gatica-Arias, “Enhancing coffee diversity: Insights into
the impact of sodium azide mutagenesis on quantitative and qualitative traits in Coffea arabica L”, Scientia
Horticulturae, vol. 330, no. 113043, pp. 1-9, 2024. https://doi.org/10.1016/j.scienta.2024.113043
International Atomic Energy Agency, “Mutant Variety Search - NEP-2”, 2022. [Online]. Disponible en: https://
nucleus.iaea.org/sites/mvd/SitePages/Search.aspx?MVID=1550 [Consultado: 28-abr-2024]
International Atomic Energy Agency, “Mutant Variety Search - UNP 9027”, 2022. [Online]. Disponible en:
https://nucleus.iaea.org/sites/mvd/SitePages/Search.aspx?MVID=905 [Consultado: 28-abr-2024]
International Atomic Energy Agency, “Mutant Variety Search - Uneca-Gama”, 2022. [Online]. Disponible en:
https://nucleus.iaea.org/sites/mvd/SitePages/Search.aspx?MVID=1549 [Consultado: 28-abr-2024]
International Atomic Energy Agency, “Mutant Variety Search - Camago-8”, 2022. [Online]. Disponible en:
https://nucleus.iaea.org/sites/mvd/SitePages/Search.aspx?MVID=904 [Consultado: 28-abr-2024]
L. Ma, F. Kong, K. Sun, T. Wang, T. Guo, “From classical radiation to modern radiation: Past, present, and
future of radiation mutation breeding”, Frontiers in Public Health, vol. 9, no. 768071, pp. 1-11, 2021. https://doi.
org/10.3389/fpubh.2021.768071
M. Kashtwari et al., “Random mutagenesis in vegetatively propagated crops: Opportunities, challenges and
genome editing prospects”, Molecular Biology Reports, vol. 49, pp. 5729-5749, 2021. https://doi.org/10.1007/
s11033-021-06650-0
H. Singh, A. Khar, P. Verma, “Induced mutagenesis for genetic improvement of Allium genetic resources: A
comprehensive review”, Genetic Resources and Crop Evolution, vol. 68, pp. 2669-2690, 2021. https://doi.
org/10.1007/s10722-021-01210-8
C. Jung, B. Till, “Mutagenesis and genome editing in crop improvement: Perspectives for the global regulatory landscape”, Trends in Plant Science, vol. 26, no. 12, pp. 1258-1269, 2021. https://doi.org/10.1016/j.
tplants.2021.08.002
K. A. Omar, K. Hasnaoui, A. de la Lande, “First-principles simulations of biological molecules subjected to
ionizing radiation”, Annual Review of Physical Chemistry, vol. 72, pp. 445-465, 2021. https://doi.org/10.1146/
annurev-physchem-101419-013639
B. B. Gollapudi, A. L. Williams, J. S. Bus, “A review of the genotoxicity of the industrial chemical cumene”, Mutation Research/Reviews in Mutation Research, vol. 787, no. 108364, pp. 1-10, 2021. https://doi.
org/10.1016/j.mrrev.2021.108364
I. B. Holme, P. L. Gregersen, H. Brinch-Pedersen, “Induced genetic variation in crop plants by random or
targeted mutagenesis: Convergence and differences”, Frontiers in Plant Science, vol. 10, no. 1468, pp. 1-9,
https://doi.org/10.3389/fpls.2019.01468
D. A. Animasaun, E. O. Oguntoye, “Mutagenesis in crop improvement: Methods and applications”, Journal of
Crop Improvement, vol. 38, no. 3, pp. 1-23, 2024. https://doi.org/10.1080/15427528.2024.2336257
J. Pérez, A. Hernández-Soto, A. Abdelnour-Esquivel, W. Vargas-Segura, W. Watson-Guido, A. Gatica-Arias, “In
vitro gamma mutagenesis techniques in rice (Oryza sativa L. var. Lazarroz FL)” en Plant Functional Genomics:
Methods and Protocols, vol. 2, F. Maghuly, Ed. Nueva York: Humana Press, 2024, pp. 243-255. https://doi.
org/10.1007/978-1-0716-3782-1_14
M. Ahmad, Q. Ali, M. M. Hafeez, A. Malik, “Improvement for biotic and abiotic stress tolerance in crop plants”,
Biological and Clinical Sciences Research Journal, vol. 2021, no. 1, pp. 1-9, 2021. https://doi.org/10.54112/
bcsrj.v2021i1.50
A. Hernández-Soto, F. Echeverría-Beirute, A. Abdelnour-Esquivel, M. Valdez-Melara, J. Boch, A. Gatica-Arias,
“Rice breeding in the new era: Comparison of useful agronomic traits,” Current Plant Biology, vol. 27, no.
, pp. 1-15, 2021. https://doi.org/10.1016/j.cpb.2021.100211
S. Tyagi et al., “Genome editing for resistance to insect pests: An emerging tool for crop improvement”, ACS
Omega, vol. 5, no. 33, pp. 20674-20683, 2020. https://doi.org/10.1021/acsomega.0c01435
M. Kaur, K. S. Thind, G. S. Sanghera, R. Kumar, L. Kashyap, “Gamma rays induced variability for economic traits, quality and red rot resistance in sugarcane (Saccharum spp.), International Journal of Science,
Environment and Technology, vol. 5, no. 2, pp. 355-365, 2016. https://www.ijset.net/journal/868.pdf
H. Ge et al., “Production of sweet orange somaclones tolerant to citrus canker disease by in vitro mutagenesis
with EMS”, Plant Cell, Tissue and Organ Culture, vol. 123, pp. 29-38, 2015. https://doi.org/10.1007/s11240-015-
-7
M. A. Islam, M. M. B. M. Uddin, M. G. Rasul, M. A. H. Swapon, M. Ahmed, M. Hasan, “In vitro screening
and field performance of EMS-treated eggplants for the selection of shoot and fruit borer-resistant plants”,
Agronomy, vol. 12, no. 8, pp. 1-14, 2022. https://doi.org/10.3390/agronomy12081832
A. Peng et al., “Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility
gene CsLOB1 promoter in citrus”, Plant Biotechnology Journal, vol. 15, no. 12, pp. 1509-1519, 2017. https://
doi.org/10.1111/pbi.12733
Y. Zhang et al., “Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat”, The Plant Journal, vol. 91, no. 4, pp. 714-724, 2017. https://doi.org/10.1111/
tpj.13599
R. Oliva et al., “Broad-spectrum resistance to bacterial blight in rice using genome editing”, Nature
Biotechnology, vol. 37, pp. 1344-1350, 2019. https://doi.org/10.1038/s41587-019-0267-z
V. K. Bari et al., “CRISPR/Cas9-mediated mutagenesis of CAROTENOID CLEAVAGE DIOXYGENASE 8 in
tomato provides resistance against the parasitic weed Phelipanche aegyptiaca”, Scientific Reports, vol. 9, no.
, pp. 1-12, 2019. https://doi.org/10.1038/s41598-019-47893-z
V. Nekrasov, C. Wang, J. Win, C. Lanz, D. Weigel, S. Kamoun, “Rapid generation of a transgene-free powdery
mildew resistant tomato by genome deletion”, Scientific Reports, vol. 7, no. 482, pp. 1-6, 2017. https://doi.
org/10.1038/s41598-017-00578-x
A. Raina, S. Khan, P. K. Sahu, R. Sao, “Increasing rice grain yield under abiotic stresses: Mutagenesis,
genomics and transgenic approaches” en Rice Research for Quality Improvement: Genomics and Genetic
Engineering, vol. 1, A. Roychoudhury, Ed. Singapur: Springer, 2020, pp. 753-777. https://doi.org/10.1007/978-
-15-4120-9_31
O. Arriagada, F. Cacciuttolo, R. A. Cabeza, B. Carrasco, A. R. Schwember, “A comprehensive review on chickpea (Cicer arietinum L.) breeding for abiotic stress tolerance and climate change resilience”, International
Journal of Molecular Sciences, vol. 23, no. 12, pp. 1-24, 2022. https://doi.org/10.3390/ijms23126794
A. Rai, S. Bhujbal, S. J. Jambhulkar, “Development of abiotic stress–tolerant mustard genotype through induced mutagenesis” en Global Climate Change, S. Singh, P. Singh, S. Rangabhashiyam, K. K. Srivastava, Eds.
Ámsterdam: Elsevier, 2021, pp. 213-233. https://doi.org/10.1016/B978-0-12-822928-6.00004-6
A. Shankar, O. Choudhary, K. Singh, “Effect of EMS induced mutation in rice cultivar Nagina 22 on salinity
tolerance”, bioRxiv, pp. 1-10, 2021. https://doi.org/10.1101/2021.08.03.455004
Z. Chen et al., “Generation of a series of mutant lines resistant to imidazolinone by screening an EMSbased mutant library in common wheat”, The Crop Journal, vol. 9, no. 5, pp. 1030-1038, 2021. https://doi.
org/10.1016/j.cj.2020.11.001
J. Lethin et al., “Development and characterization of an EMS-mutagenized wheat population and identification
of salt-tolerant wheat lines”, BMC Plant Biology, vol. 20, no. 1, pp. 1-15, 2020. https://doi.org/10.1186/s12870-
-2137-8
M. V. Purankar, A. A. Nikam, R. M. Devarumath, S. Penna, “Radiation induced mutagenesis, physio-biochemical profiling and field evaluation of mutants in sugarcane cv. CoM 0265”, International Journal of Radiation
Biology, vol. 98, no. 7, pp. 1261-1276, 2022. https://doi.org/10.1080/09553002.2022.2024291
A. A. Nikam, R. M. Devarumath, A. Ahuja, H. Babu, M. G. Shitole, S. Penna, “Radiation-induced in vitro mutagenesis system for salt tolerance and other agronomic characters in sugarcane (Saccharum officinarum L.)”,
The Crop Journal, vol. 3, no. 1, pp. 46-56, 2015. https://doi.org/10.1016/j.cj.2014.09.002
G. -J., Baeg, S. -H. Kim, D. -M. Choi, S. Tripathi, Y. -J. Han, J. -I. Kim, “CRISPR/Cas9-mediated mutation of
-oxoprolinase gene confers resistance to sulfonamide compounds in Arabidopsis”, Plant Biotechnology
Reports, vol. 15, pp. 753-764, 2021. https://doi.org/10.1007/s11816-021-00718-w
D. T. Teshome, G. E. Zharare, S. Naidoo, “The threat of the combined effect of biotic and abiotic stress factors
in forestry under a changing climate”, Frontiers in Plant Science, vol. 11, no. 601009, pp. 1-19, 2020. https://
doi.org/10.3389/fpls.2020.601009
E. M. Jobson et al., “Identification and molecular characterization of novel Rht-1 alleles in hard red spring
wheat”, Crop Science, vol. 61, no. 2, pp. 1030-1037, 2021. https://doi.org/10.1002/csc2.20375
L. Huang et al., “Developing superior alleles of yield genes in rice by artificial mutagenesis using the CRISPR/
Cas9 system”, The Crop Journal, vol. 6, no. 5, pp. 475-481, 2018. https://doi.org/10.1016/j.cj.2018.05.005
A. Saha, “EMS induced polygenic mutation in tilottama cultivar of Sesamum indicum”, Plant Archives, vol. 19,
no. 1, pp. 630–632, 2019. https://www.plantarchives.org/PDF%2019-1/630-632%20(4657).pdf
S. K. Sandhu, R. Singh, S. Penna, “Radiation-induced mutants with increased cane number in sugarcane
variety CoJ 85”, Journal of Crop Improvement, vol. 33, no. 2, pp. 1-15, 2019. https://doi.org/10.1080/1542752
2018.1554546
J. F. Argüello Delgado et al., “Costa Rica: Aumento de la variabilidad genética en el cultivo del arroz (Oryza
sativa L.)” en Inducción de mutaciones: Estado del conocimiento en el mejoramiento de plantas en América
Latina y el Caribe, S. de los Santos Villalobos, Ed. Ciudad de México, Editorial FONTARAMA, 2021, pp. 45-66.
ISBN: 978-607-736-684-3.
A. Gatica-Arias, “The regulatory current status of plant breeding technologies in some Latin American and
the Caribbean countries,” Plant Cell, Tissue and Organ Culture (PCTOC), vol. 141, no. 2, pp. 229–242, 2020.
https://doi.org/10.1007/s11240-020-01799-1
D. M. Macall, J. Madrigal-Pana, S. J. Smyth, A. Gatica-Arias, “Costa Rican consumer perceptions of geneediting,” Heliyon, vol. 9, no. 8, pp. 1-11, 2023. https://doi.org/10.1016/j.heliyon.2023.e19173
A. Gatica-Arias, M. Valdez-Melara, G. Arrieta-Espinoza, F. J. Albertazzi-Castro, and J. Madrigal-Pana,
“Consumer attitudes toward food crops developed by CRISPR/Cas9 in Costa Rica,” Plant Cell, Tissue and
Organ Culture (PCTOC), vol. 139, no. 2, pp. 417–427, 2019. https://doi.org/10.1007/s11240-019-01647-x
A. Hernández-Soto, J. P. Delgado-Navarro, M. Benavides-Acevedo, S. A. Paniagua, A. Gatica-Arias, “NTH2
_1272delTA gene disruption results in salt tolerance in Saccharomyces cerevisiae”, Fermentation, vol. 8,
no. 4, pp. 1-14, 2022. https://doi.org/10.3390/fermentation8040166
F. M. Romero, A. Gatica-Arias, “CRISPR/Cas9: Development and application in rice breeding,” Rice Science,
vol. 26, no. 5, pp. 265–281, 2019. https://doi.org/10.1016/j.rsci.2019.08.001
R. Rojas-Vásquez, A. Gatica-Arias, “Use of genome editing technologies for genetic improvement of crops of
tropical origin,” Plant Cell, Tissue and Organ Culture (PCTOC), vol. 140, no. 1, pp. 215–244, 2020. https://doi.
org/10.1007/s11240-019-01707-2
C. Aguilar-Bartels, P. Quirós-Segura, A. García-Piñeres, A. Gatica-Arias, G. Arrieta-Espinoza, “Key aspects
for the genetic transformation of rice (Oryza sativa L.) subspecies indica by Agrobacterium tumefaciens”,
Agronomia Mesoamericana, vol. 32, no. 3, pp. 764–778, 2021. https://doi.org/10.15517/am.v32i3.44978
J. Villalta-Villalobos, A. Gatica-Arias, “A look back in time: Genetic improvement of coffee through the
application of biotechnology,” Agronomía Mesoamericana, vol. 30, no. 2, pp. 577–599, 2019. http://dx.doi.
org/10.15517/am.v30i2.34173
R. Rojas Vásquez, “Edición del gen de la enzima trehalasa mediante CRISPR-Cas9 en arroz subsp. indica var.
CR-5272,” Tesis de maestría, Universidad de Costa Rica, 2022. [En línea]. Disponible en: https://hdl.handle.
net/10669/87766
A. Sebiani-Calvo, “Desarrollo de un sistema de edición genética CRISPR/CAS9 in planta en embriones maduros de arroz (Oryza sativa L.) mediante Agrobacterium tumefaciens,” Tesis de maestría, Universidad de Costa
Rica, 2023. [En línea]. Disponible en: https://hdl.handle.net/10669/90585