Induction of mutations and plant biotechnology to produce stress-resistant crops with higher yields

Main Article Content

Frank Barriento-Alfaro
Jason Pérez
Alejandro Hernández-Soto

Abstract

Mutations and the genetic variability caused by them play a fundamental role in the genetic
improvement of plants. Mutation induction or mutagenesis represents a rapid and effective
option for the development of new varieties that maintain optimal productivity levels in
challenging agricultural environments. Mutation induction can be carried out using physical
agents, chemical agents, or gene editing tools. The combined use of mutagenesis with in vitro
tissue culture techniques allows for the establishment of efficient and cost-effective selection
strategies. This article provides a brief overview of mutation induction, the most commonly used
techniques for this purpose, and some improvements achieved in various crops in relation to
biotic stress, abiotic stress, and productive yield. Finally, it examines the historical landscape
of genetic improvement through mutation induction in Costa Rica, specifically in the crops of
greatest economic and social relevance to the country.

Article Details

How to Cite
Barriento-Alfaro, F., Pérez, J., & Hernández-Soto, A. (2024). Induction of mutations and plant biotechnology to produce stress-resistant crops with higher yields. Tecnología En Marcha Journal, 37(9), Pág. 137–151. https://doi.org/10.18845/tm.v37i9.7619
Section
Artículo científico

References

N. Hasan, S. Choudhary, N. Naaz, N. Sharma, R. A. Laskar, “Recent advancements in molecular markerassisted selection and applications in plant breeding programmes”, Journal of Genetic Engineering and

Biotechnology, vol. 19, no. 1, pp. 1-26, 2021. https://doi.org/10.1186/s43141-021-00231-1

V. E. Viana, C. Pegoraro, C. Busanello, A. C. De Oliveira, “Mutagenesis in rice: The basis for breeding a new super

plant”, Frontiers in Plant Science, vol. 10, no. 1326, pp. 1-28, 2019. https://doi.org/10.3389%2Ffpls.2019.01326

Y. Oladosu et al., “Principle and application of plant mutagenesis in crop improvement: A review”, Biotechnology

and Biotechnological Equipment, vol. 30, no. 1, pp. 1-16, 2016. https://doi.org/10.1080/13102818.2015.108733

A. Berry, J. Browne, “Mendel and Darwin”, PNAS, vol. 119, no. 30, pp. 1-10, 2022. https://doi.org/10.1073/

pnas.2122144119

J. J. García Villarroel, “Impacto de las mutaciones en la salud humana: Una revisión actualizada”, Revista

Orbis Tertius UPAL, vol. 7, no. 14, pp. 127-152, 2023. https://doi.org/10.59748/ot.v7i14.140

W. Ma, Y. Zhan, Y. Zhang, C. Mao, X. Xie, Y. Lin, “The biological applications of DNA nanomaterials: Current

challenges and future directions”, Signal Transduction and Targeted Therapy, vol. 6, no. 351, pp. 1-28, 2021.

https://doi.org/10.1038/s41392-021-00727-9

J. Vijg, “From DNA damage to mutations: All roads lead to aging”, Ageing Research Reviews, vol. 68, no.

, pp. 1-12, 2021. https://doi.org/10.1016/j.arr.2021.101316

A. Carusillo, C. Mussolino, “DNA damage: From threat to treatment”, Cells, vol. 9, no. 7, pp. 1-20, 2020. https://

doi.org/10.3390/cells9071665

A. Livnat, A. C. Love, “Mutation and evolution: Conceptual possibilities”, BioEssays, vol. 46, no. 2, pp. 1-12,

https://doi.org/10.1002/bies.202300025

S. Ahmar et al., “Conventional and molecular techniques from simple breeding to speed breeding in crop

plants: Recent advances and future outlook”, International Journal of Molecular Sciences, vol. 21, no. 7, pp.

-24, 2020. https://doi.org/10.3390/ijms21072590

J. Chaudhary et al., “Mutation breeding in tomato: Advances, applicability and challenges”, Plants, vol. 5, no.

, pp. 1-17, 2019. https://doi.org/10.3390/plants8050128

M. de la L. Riviello-Flores et al., “Use of gamma radiation for the genetic improvement of underutilized plant

varieties”, Plants, vol. 11, no. 9, pp. 1-19, 2022. https://doi.org/10.3390%2Fplants11091161

A. Bhoi, B. Yadu, J. Chandra, S. Keshavkant, “Mutagenesis: A coherent technique to develop biotic stress

resistant plants”, Plant Stress, vol. 3, no. 100053, pp. 1-10, 2022. https://doi.org/10.1016/j.stress.2021.100053

F. Li, A. Shimizu, T. Nishio, N. Tsutsumi, H. Kato, “Comparison and characterization of mutations induced

by gamma-ray and carbon-ion radiation in rice (Oryza sativa L.) using whole genome resequencing”, G3

Genes|Genomes|Genetics, vol. 9, no. 11, pp. 3743-3751, 2019. https://doi.org/10.1534/g3.119.400555

G. Yang et al., “Genome-wide comparisons of mutations induced by carbon-ion beam and gamma-rays irradiation in rice via resequencing multiple mutants”, Frontiers in Plant Science, vol. 10, no. 1514, pp. 1-13, 2019.

https://doi.org/10.3389/fpls.2019.01514

R. M. Shelake, D. Pramanik, J. -Y. Kim, “Evolution of plant mutagenesis tools: A shifting paradigm from random

to targeted genome editing”, Plant Biotechnology, vol. 13, pp. 423-445, 2019. https://doi.org/10.1007/s11816-

-00562-z

Q. M. M. Hossen et al., “Development of early flowering, short life-spanned jute (Corchorus spp.) mutant via

ethyl methane sulfonate mutagenesis”, Journal of Crop Science and Biotechnology, vol. 25, pp. 489-500, 2022.

https://doi.org/10.1007/s12892-022-00146-4

A. C. Udage, “Introduction to plant mutation breeding: Different approaches and mutagenic agents”, The

Journal of Agricultural Sciences - Sri Lanka, vol. 16, no. 3, pp. 466-483, 2021. https://doi.org/10.4038/jas.

v16i03.9472

Centro para Investigaciones en Granos y Semillas, “Informe de Labores 2014-2015”, Universidad de Costa

Rica, San Pedro, Costa Rica, 2015. https://cigras.ucr.ac.cr/documentos/category/21-informe-2014-2015

Centro para Investigaciones en Granos y Semillas, “Informe de Labores 2016”, Universidad de Costa Rica,

San Pedro, Costa Rica, 2016. https://cigras.ucr.ac.cr/documentos/category/22-informe-2016

Centro para Investigaciones en Granos y Semillas, “Informe de Labores 2017”, Universidad de Costa Rica,

San Pedro, Costa Rica, 2017. https://cigras.ucr.ac.cr/documentos/category/23-informe-2017

Centro para Investigaciones en Granos y Semillas, “Informe de Labores 2018”, Universidad de Costa Rica,

San Pedro, Costa Rica, 2018. https://cigras.ucr.ac.cr/documentos/category/24-informe-2018

L. Y. Solís-Ramos et al., “Effect of gamma irradiation and selection with fungus filtrate (Rhizoctonia solani Kuhn)

on the in vitro culture of common bean (Phaseolus vulgaris)”, American Journal of Plant Sciences, vol. 6, no.

, pp. 2672-2685, 2015. http://dx.doi.org/10.4236/ajps.2015.616269

A. Bolívar-González, M. Valdez-Melara, A. Gatica-Arias, “Responses of Arabica coffee (Coffea arabica L. var.

Catuaí) cell suspensions to chemically induced mutagenesis and salinity stress under in vitro culture conditions, In Vitro Cellular & Developmental Biology - Plant, vol. 54, pp. 576-589, 2018. https://doi.org/10.1007/s11627-018-9918-x

A. Abdelnour-Esquivel, J. Pérez, M. Rojas, W. Vargas, A. Gatica-Arias, “Use of gamma radiation to induce

mutations in rice (Oryza sativa L.) and the selection of lines with tolerance to salinity and drought”, In Vitro

Cellular & Developmental Biology - Plant, vol. 56, pp. 88-97, 2020. https://doi.org/10.1007/s11627-019-10015-5

A. Gatica-Arias, J. Rodríguez-Matamoros, A. Abdelnour-Esquivel, M. Valdez-Melara, “Determination of the

optimal conditions for mutagenesis induction in a commercial Arabica coffee variety” en Mutation Breeding,

Genetic Diversity and Crop Adaptation to Climate Change, S. Sivasankar, N. Ellis, L. Jankuloski, I. Ingelbrecht,

Eds. Wallingford, CABI, 2021, pp. 213-233. https://doi.org/10.1079/9781789249095.0034

A. Hernández-Soto et al., “Tolerance to aryloxy-phenoxy-propionate (APP) as a model for Lazarroz FL rice in

vitro gamma irradiation variability selection”, bioRxiv, pp. 1-12, 2022. https://doi.org/10.21203/rs.3.rs-1950230/

v2

J. A. Rojas-Chacón, F. Echeverría-Beirute, B. J. Till, A. Gatica-Arias, “Enhancing coffee diversity: Insights into

the impact of sodium azide mutagenesis on quantitative and qualitative traits in Coffea arabica L”, Scientia

Horticulturae, vol. 330, no. 113043, pp. 1-9, 2024. https://doi.org/10.1016/j.scienta.2024.113043

International Atomic Energy Agency, “Mutant Variety Search - NEP-2”, 2022. [Online]. Disponible en: https://

nucleus.iaea.org/sites/mvd/SitePages/Search.aspx?MVID=1550 [Consultado: 28-abr-2024]

International Atomic Energy Agency, “Mutant Variety Search - UNP 9027”, 2022. [Online]. Disponible en:

https://nucleus.iaea.org/sites/mvd/SitePages/Search.aspx?MVID=905 [Consultado: 28-abr-2024]

International Atomic Energy Agency, “Mutant Variety Search - Uneca-Gama”, 2022. [Online]. Disponible en:

https://nucleus.iaea.org/sites/mvd/SitePages/Search.aspx?MVID=1549 [Consultado: 28-abr-2024]

International Atomic Energy Agency, “Mutant Variety Search - Camago-8”, 2022. [Online]. Disponible en:

https://nucleus.iaea.org/sites/mvd/SitePages/Search.aspx?MVID=904 [Consultado: 28-abr-2024]

L. Ma, F. Kong, K. Sun, T. Wang, T. Guo, “From classical radiation to modern radiation: Past, present, and

future of radiation mutation breeding”, Frontiers in Public Health, vol. 9, no. 768071, pp. 1-11, 2021. https://doi.

org/10.3389/fpubh.2021.768071

M. Kashtwari et al., “Random mutagenesis in vegetatively propagated crops: Opportunities, challenges and

genome editing prospects”, Molecular Biology Reports, vol. 49, pp. 5729-5749, 2021. https://doi.org/10.1007/

s11033-021-06650-0

H. Singh, A. Khar, P. Verma, “Induced mutagenesis for genetic improvement of Allium genetic resources: A

comprehensive review”, Genetic Resources and Crop Evolution, vol. 68, pp. 2669-2690, 2021. https://doi.

org/10.1007/s10722-021-01210-8

C. Jung, B. Till, “Mutagenesis and genome editing in crop improvement: Perspectives for the global regulatory landscape”, Trends in Plant Science, vol. 26, no. 12, pp. 1258-1269, 2021. https://doi.org/10.1016/j.

tplants.2021.08.002

K. A. Omar, K. Hasnaoui, A. de la Lande, “First-principles simulations of biological molecules subjected to

ionizing radiation”, Annual Review of Physical Chemistry, vol. 72, pp. 445-465, 2021. https://doi.org/10.1146/

annurev-physchem-101419-013639

B. B. Gollapudi, A. L. Williams, J. S. Bus, “A review of the genotoxicity of the industrial chemical cumene”, Mutation Research/Reviews in Mutation Research, vol. 787, no. 108364, pp. 1-10, 2021. https://doi.

org/10.1016/j.mrrev.2021.108364

I. B. Holme, P. L. Gregersen, H. Brinch-Pedersen, “Induced genetic variation in crop plants by random or

targeted mutagenesis: Convergence and differences”, Frontiers in Plant Science, vol. 10, no. 1468, pp. 1-9,

https://doi.org/10.3389/fpls.2019.01468

D. A. Animasaun, E. O. Oguntoye, “Mutagenesis in crop improvement: Methods and applications”, Journal of

Crop Improvement, vol. 38, no. 3, pp. 1-23, 2024. https://doi.org/10.1080/15427528.2024.2336257

J. Pérez, A. Hernández-Soto, A. Abdelnour-Esquivel, W. Vargas-Segura, W. Watson-Guido, A. Gatica-Arias, “In

vitro gamma mutagenesis techniques in rice (Oryza sativa L. var. Lazarroz FL)” en Plant Functional Genomics:

Methods and Protocols, vol. 2, F. Maghuly, Ed. Nueva York: Humana Press, 2024, pp. 243-255. https://doi.

org/10.1007/978-1-0716-3782-1_14

M. Ahmad, Q. Ali, M. M. Hafeez, A. Malik, “Improvement for biotic and abiotic stress tolerance in crop plants”,

Biological and Clinical Sciences Research Journal, vol. 2021, no. 1, pp. 1-9, 2021. https://doi.org/10.54112/

bcsrj.v2021i1.50

A. Hernández-Soto, F. Echeverría-Beirute, A. Abdelnour-Esquivel, M. Valdez-Melara, J. Boch, A. Gatica-Arias,

“Rice breeding in the new era: Comparison of useful agronomic traits,” Current Plant Biology, vol. 27, no.

, pp. 1-15, 2021. https://doi.org/10.1016/j.cpb.2021.100211

S. Tyagi et al., “Genome editing for resistance to insect pests: An emerging tool for crop improvement”, ACS

Omega, vol. 5, no. 33, pp. 20674-20683, 2020. https://doi.org/10.1021/acsomega.0c01435

M. Kaur, K. S. Thind, G. S. Sanghera, R. Kumar, L. Kashyap, “Gamma rays induced variability for economic traits, quality and red rot resistance in sugarcane (Saccharum spp.), International Journal of Science,

Environment and Technology, vol. 5, no. 2, pp. 355-365, 2016. https://www.ijset.net/journal/868.pdf

H. Ge et al., “Production of sweet orange somaclones tolerant to citrus canker disease by in vitro mutagenesis

with EMS”, Plant Cell, Tissue and Organ Culture, vol. 123, pp. 29-38, 2015. https://doi.org/10.1007/s11240-015-

-7

M. A. Islam, M. M. B. M. Uddin, M. G. Rasul, M. A. H. Swapon, M. Ahmed, M. Hasan, “In vitro screening

and field performance of EMS-treated eggplants for the selection of shoot and fruit borer-resistant plants”,

Agronomy, vol. 12, no. 8, pp. 1-14, 2022. https://doi.org/10.3390/agronomy12081832

A. Peng et al., “Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility

gene CsLOB1 promoter in citrus”, Plant Biotechnology Journal, vol. 15, no. 12, pp. 1509-1519, 2017. https://

doi.org/10.1111/pbi.12733

Y. Zhang et al., “Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat”, The Plant Journal, vol. 91, no. 4, pp. 714-724, 2017. https://doi.org/10.1111/

tpj.13599

R. Oliva et al., “Broad-spectrum resistance to bacterial blight in rice using genome editing”, Nature

Biotechnology, vol. 37, pp. 1344-1350, 2019. https://doi.org/10.1038/s41587-019-0267-z

V. K. Bari et al., “CRISPR/Cas9-mediated mutagenesis of CAROTENOID CLEAVAGE DIOXYGENASE 8 in

tomato provides resistance against the parasitic weed Phelipanche aegyptiaca”, Scientific Reports, vol. 9, no.

, pp. 1-12, 2019. https://doi.org/10.1038/s41598-019-47893-z

V. Nekrasov, C. Wang, J. Win, C. Lanz, D. Weigel, S. Kamoun, “Rapid generation of a transgene-free powdery

mildew resistant tomato by genome deletion”, Scientific Reports, vol. 7, no. 482, pp. 1-6, 2017. https://doi.

org/10.1038/s41598-017-00578-x

A. Raina, S. Khan, P. K. Sahu, R. Sao, “Increasing rice grain yield under abiotic stresses: Mutagenesis,

genomics and transgenic approaches” en Rice Research for Quality Improvement: Genomics and Genetic

Engineering, vol. 1, A. Roychoudhury, Ed. Singapur: Springer, 2020, pp. 753-777. https://doi.org/10.1007/978-

-15-4120-9_31

O. Arriagada, F. Cacciuttolo, R. A. Cabeza, B. Carrasco, A. R. Schwember, “A comprehensive review on chickpea (Cicer arietinum L.) breeding for abiotic stress tolerance and climate change resilience”, International

Journal of Molecular Sciences, vol. 23, no. 12, pp. 1-24, 2022. https://doi.org/10.3390/ijms23126794

A. Rai, S. Bhujbal, S. J. Jambhulkar, “Development of abiotic stress–tolerant mustard genotype through induced mutagenesis” en Global Climate Change, S. Singh, P. Singh, S. Rangabhashiyam, K. K. Srivastava, Eds.

Ámsterdam: Elsevier, 2021, pp. 213-233. https://doi.org/10.1016/B978-0-12-822928-6.00004-6

A. Shankar, O. Choudhary, K. Singh, “Effect of EMS induced mutation in rice cultivar Nagina 22 on salinity

tolerance”, bioRxiv, pp. 1-10, 2021. https://doi.org/10.1101/2021.08.03.455004

Z. Chen et al., “Generation of a series of mutant lines resistant to imidazolinone by screening an EMSbased mutant library in common wheat”, The Crop Journal, vol. 9, no. 5, pp. 1030-1038, 2021. https://doi.

org/10.1016/j.cj.2020.11.001

J. Lethin et al., “Development and characterization of an EMS-mutagenized wheat population and identification

of salt-tolerant wheat lines”, BMC Plant Biology, vol. 20, no. 1, pp. 1-15, 2020. https://doi.org/10.1186/s12870-

-2137-8

M. V. Purankar, A. A. Nikam, R. M. Devarumath, S. Penna, “Radiation induced mutagenesis, physio-biochemical profiling and field evaluation of mutants in sugarcane cv. CoM 0265”, International Journal of Radiation

Biology, vol. 98, no. 7, pp. 1261-1276, 2022. https://doi.org/10.1080/09553002.2022.2024291

A. A. Nikam, R. M. Devarumath, A. Ahuja, H. Babu, M. G. Shitole, S. Penna, “Radiation-induced in vitro mutagenesis system for salt tolerance and other agronomic characters in sugarcane (Saccharum officinarum L.)”,

The Crop Journal, vol. 3, no. 1, pp. 46-56, 2015. https://doi.org/10.1016/j.cj.2014.09.002

G. -J., Baeg, S. -H. Kim, D. -M. Choi, S. Tripathi, Y. -J. Han, J. -I. Kim, “CRISPR/Cas9-mediated mutation of

-oxoprolinase gene confers resistance to sulfonamide compounds in Arabidopsis”, Plant Biotechnology

Reports, vol. 15, pp. 753-764, 2021. https://doi.org/10.1007/s11816-021-00718-w

D. T. Teshome, G. E. Zharare, S. Naidoo, “The threat of the combined effect of biotic and abiotic stress factors

in forestry under a changing climate”, Frontiers in Plant Science, vol. 11, no. 601009, pp. 1-19, 2020. https://

doi.org/10.3389/fpls.2020.601009

E. M. Jobson et al., “Identification and molecular characterization of novel Rht-1 alleles in hard red spring

wheat”, Crop Science, vol. 61, no. 2, pp. 1030-1037, 2021. https://doi.org/10.1002/csc2.20375

L. Huang et al., “Developing superior alleles of yield genes in rice by artificial mutagenesis using the CRISPR/

Cas9 system”, The Crop Journal, vol. 6, no. 5, pp. 475-481, 2018. https://doi.org/10.1016/j.cj.2018.05.005

A. Saha, “EMS induced polygenic mutation in tilottama cultivar of Sesamum indicum”, Plant Archives, vol. 19,

no. 1, pp. 630–632, 2019. https://www.plantarchives.org/PDF%2019-1/630-632%20(4657).pdf

S. K. Sandhu, R. Singh, S. Penna, “Radiation-induced mutants with increased cane number in sugarcane

variety CoJ 85”, Journal of Crop Improvement, vol. 33, no. 2, pp. 1-15, 2019. https://doi.org/10.1080/1542752

2018.1554546

J. F. Argüello Delgado et al., “Costa Rica: Aumento de la variabilidad genética en el cultivo del arroz (Oryza

sativa L.)” en Inducción de mutaciones: Estado del conocimiento en el mejoramiento de plantas en América

Latina y el Caribe, S. de los Santos Villalobos, Ed. Ciudad de México, Editorial FONTARAMA, 2021, pp. 45-66.

ISBN: 978-607-736-684-3.

A. Gatica-Arias, “The regulatory current status of plant breeding technologies in some Latin American and

the Caribbean countries,” Plant Cell, Tissue and Organ Culture (PCTOC), vol. 141, no. 2, pp. 229–242, 2020.

https://doi.org/10.1007/s11240-020-01799-1

D. M. Macall, J. Madrigal-Pana, S. J. Smyth, A. Gatica-Arias, “Costa Rican consumer perceptions of geneediting,” Heliyon, vol. 9, no. 8, pp. 1-11, 2023. https://doi.org/10.1016/j.heliyon.2023.e19173

A. Gatica-Arias, M. Valdez-Melara, G. Arrieta-Espinoza, F. J. Albertazzi-Castro, and J. Madrigal-Pana,

“Consumer attitudes toward food crops developed by CRISPR/Cas9 in Costa Rica,” Plant Cell, Tissue and

Organ Culture (PCTOC), vol. 139, no. 2, pp. 417–427, 2019. https://doi.org/10.1007/s11240-019-01647-x

A. Hernández-Soto, J. P. Delgado-Navarro, M. Benavides-Acevedo, S. A. Paniagua, A. Gatica-Arias, “NTH2

_1272delTA gene disruption results in salt tolerance in Saccharomyces cerevisiae”, Fermentation, vol. 8,

no. 4, pp. 1-14, 2022. https://doi.org/10.3390/fermentation8040166

F. M. Romero, A. Gatica-Arias, “CRISPR/Cas9: Development and application in rice breeding,” Rice Science,

vol. 26, no. 5, pp. 265–281, 2019. https://doi.org/10.1016/j.rsci.2019.08.001

R. Rojas-Vásquez, A. Gatica-Arias, “Use of genome editing technologies for genetic improvement of crops of

tropical origin,” Plant Cell, Tissue and Organ Culture (PCTOC), vol. 140, no. 1, pp. 215–244, 2020. https://doi.

org/10.1007/s11240-019-01707-2

C. Aguilar-Bartels, P. Quirós-Segura, A. García-Piñeres, A. Gatica-Arias, G. Arrieta-Espinoza, “Key aspects

for the genetic transformation of rice (Oryza sativa L.) subspecies indica by Agrobacterium tumefaciens”,

Agronomia Mesoamericana, vol. 32, no. 3, pp. 764–778, 2021. https://doi.org/10.15517/am.v32i3.44978

J. Villalta-Villalobos, A. Gatica-Arias, “A look back in time: Genetic improvement of coffee through the

application of biotechnology,” Agronomía Mesoamericana, vol. 30, no. 2, pp. 577–599, 2019. http://dx.doi.

org/10.15517/am.v30i2.34173

R. Rojas Vásquez, “Edición del gen de la enzima trehalasa mediante CRISPR-Cas9 en arroz subsp. indica var.

CR-5272,” Tesis de maestría, Universidad de Costa Rica, 2022. [En línea]. Disponible en: https://hdl.handle.

net/10669/87766

A. Sebiani-Calvo, “Desarrollo de un sistema de edición genética CRISPR/CAS9 in planta en embriones maduros de arroz (Oryza sativa L.) mediante Agrobacterium tumefaciens,” Tesis de maestría, Universidad de Costa

Rica, 2023. [En línea]. Disponible en: https://hdl.handle.net/10669/90585

Most read articles by the same author(s)