Exploring culture conditions of the fungus Ganoderma curtisii for the production of enzymes with lignocellulosic activity

Main Article Content

Daniela Salas-Cuidad
Andrés Esquivel-Valerio
Catalina Rosales

Abstract

Certain white rot fungi, such as Ganoderma sp., are capable of secreting ligninases, such as
manganese peroxidases and laccases. These enzymes have a high economic value due to their
potential for the degradation of agroindustrial waste, such as waste from the pineapple activity,
which has serious negative environmental impacts in Costa Rica, and the need to integrate
these wastes into products with greater added value has been highlighted. The objective of this
research was to determine the optimal conditions of a liquid fermentation for the production of
enzymes from the fungus Ganoderma curtsii with the potential for lignocellulosic degradation. To
obtain the greatest enzymatic activity, the use of a medium low in nutrients, with an acidic pH,
in the absence of pineapple fibers, and at least 12 days of incubation was required. The results
showed that it was possible to use agricultural waste, specifically focused on the integration of
stubble from the pineapple activity in Costa Rica, into a circular economy process.

Article Details

How to Cite
Salas-Cuidad, D., Esquivel-Valerio, A., & Rosales, C. (2024). Exploring culture conditions of the fungus Ganoderma curtisii for the production of enzymes with lignocellulosic activity. Tecnología En Marcha Journal, 37(9), Pág. 115–125. https://doi.org/10.18845/tm.v37i9.7617
Section
Artículo científico

References

A. Obando Campos, “Acciones y omisiones del Estado costarricense en la expansión piñera: El caso de la

Zona Norte-Norte de Costa Rica,” Anuario Centro de Investigación y Estudios Políticos, no. 11, pp. 22–55, Nov.

, doi: 10.15517/aciep.v0i11.42226.

Ingrid Badilla Fallas, Eugenia Mora Monge, Ghiselle Rodríguez Muñoz, and Miriam Valverde Díaz, “Informe

de gestión del Sector Agropecuario, Pesquero y Rural (Mayo 2019 - Abril 2020),” San José, Costa Rica, 2020.

Accessed: Aug. 07, 2024. [Online]. Available: http://www.mag.go.cr/bibliotecavirtual/D10-11111.pdf

Katzy O`neal Coto, “UCR investiga y aporta soluciones a polémico cultivo en Costa Rica,” Universidad de

Costa Rica, 2018. Accessed: Aug. 07, 2024. [Online]. Available: https://www.ucr.ac.cr/noticias/2018/06/21/

ucr-investiga-y-aporta-soluciones-a-polemico-cultivo-en-costa-rica.html

R. Gómez-García, M. A. Medina-Morales, R. Rodrìguez, B. Farruggia, G. Picó, and C. N. Aguilar, “Production

of a xylanase by Trichoderma harzianum (Hypocrea lixii) in solid-state fermentation and its recovery by an

aqueous two-phase system,” Canadian Journal of Biotechnology, vol. 2, no. 2, pp. 108–115, Sep. 2018, doi:

24870/cjb.2018-000122.

Rodolfo A. Hernández-Chaverri and Lilia Arely Prado Barragán, “Impacto y oportunidades de biorrefinería

de los desechos agrícolas del cultivo de piña (Ananas comosus) en Costa Rica,” Cuadros de Investigación

UNED, vol. 10, no. 2, pp. 455–468, 2018, doi: 10.22458/urj.v10i2.2059.

J. Kumla et al., “Cultivation of mushrooms and their lignocellulolytic enzyme production through the utilization

of agro-industrial waste,” Jun. 01, 2020, MDPI AG. doi: 10.3390/molecules25122811.

G. Šelo, M. Planinić, M. Tišma, S. Tomas, D. Koceva Komlenić, and A. Bucić-Kojić, “A comprehensive review

on valorization of agro-food industrial residues by solid-state fermentation,” May 01, 2021, MDPI AG. doi:

3390/foods10050927.

A. Zerva, N. Tsafantakis, and E. Topakas, “Evaluation of basidiomycetes wild strains grown in agro-industrial

residues for their anti-tyrosinase and antioxidant potential and for the production of biocatalysts,” Fermentation,

vol. 7, no. 1, 2021, doi: 10.3390/fermentation7010019.

C. Rosales-López, A. Vargas-López, M. Monge-Artavia, and M. Rojas-Chaves, “Evaluation of Conditions to

Improve Biomass Production by Submerged Culture of Ganoderma sp.,” Microorganisms, vol. 10, no. 7, Jul.

, doi: 10.3390/microorganisms10071404.

A. V. Solano-Meza, “Efecto de los cultivos fúngicos de Pleurotus ostreatus y Ganoderma lucidum en la obtención de celulosa a partir de hojas de piña,” Tesis de grado, Instituto Tecnológico de Costa Rica, Cartago,

Costa Rica, 2021.

J. K. Glenn and M. H. Gold, “Decolorization of Several Polymeric Dyes by the Lignin-Degrading Basidiomycete

Phanerochaete chrysosporium,” Appl Environ Microbiol, vol. 45, no. 6, pp. 1741–1747, 1983.

S. S. More, P. S. Renuka, K. Pruthvi, M. Swetha, S. Malini, and S. M. Veena, “Isolation, purification, and characterization of fungal laccase from Pleurotus sp.,” Enzyme Res, vol. 2011, no. 1, 2011, doi: 10.4061/2011/248735.

I. Vargas-Venegas, A. Medaglia-Mata, and L. Chavarría-Pizarro, “Desarrollo de un protocolo para producir

quitosano a partir de la exuvia larval de Tenebrio molitor,” Tecnología en Marcha, vol. 37, pp. 3–16, 2024, doi:

18845/tm.v37i2.6724.

J. Jordaan and W. D. Leukes, “Isolation of a thermostable laccase with DMAB and MBTH oxidative coupling

activity from a mesophilic white rot fungus,” Enzyme Microb Technol, vol. 33, no. 2–3, pp. 212–219, Aug. 2003,

doi: 10.1016/S0141-0229(03)00116-9.

L. Q. Guo, S. X. Lin, X. B. Zheng, Z. R. Huang, and J. F. Lin, “Production, purification and characterization

of a thermostable laccase from a tropical white-rot fungus,” World J Microbiol Biotechnol, vol. 27, no. 3, pp.

–735, Mar. 2011, doi: 10.1007/s11274-010-0502-8.

C. Galhaup, S. Goller, C. K. Peterbauer, J. Strauss, and D. Haltrich, “Characterization of the major laccase

isoenzyme from Trametes pubescens and regulation of its synthesis by metal ions,” Microbiology (N Y), vol.

, pp. 2159–2169, 2002, doi: 10.1099/00221287-148-7-2159.

W. T. Huang, R. Tai, R. S. Hseu, and C. T. Huang, “Overexpression and characterization of a thermostable, pHstable and organic solvent-tolerant Ganoderma fornicatum laccase in Pichia pastoris,” Process Biochemistry,

vol. 46, no. 7, pp. 1469–1474, Jul. 2011, doi: 10.1016/j.procbio.2011.03.020.

D. Zhongyang et al., “Production and characterization of thermostable laccase from the mushroom, Ganoderma

lucidum, using submerged fermentation,” Afr J Microbiol Res, vol. 6, no. 6, pp. 1147–1157, Feb. 2012, doi:

5897/ajmr11.1257.

E. M. Ko, Y. E. Leem, and H. T. Choi, “Purification and characterization of laccase isozymes from the whiterot basidiomycete Ganoderma lucidum,” Appl Microbiol Biotechnol, vol. 57, no. 1–2, pp. 98–102, 2001, doi:

1007/s002530100727.

B. Muhammad, A. Muhammad, and R. Muhammad, “Purification and biochemical characterization of extracellular manganese peroxidase from Ganoderma lucidum IBL-05 and its application,” Scientific Research and

Essays, vol. 10, no. 14, pp. 456–464, Jul. 2015, doi: 10.5897/sre2015.6268.

S. Hariharan and P. Nambisan, “Optimization of Lignin Peroxidase, Manganese Peroxidase, and Lac

Production from Ganoderma lucidum Under Solid State Fermentation of Pineapple Leaf,” Bioresources, vol. 8,

no. 1, pp. 250–271, 2013.

H. Suryadi et al., “Biodelignification of lignocellulose using ligninolytic enzymes from white-rot fungi,” Heliyon,

vol. 8, no. 2, Feb. 2022, doi: 10.1016/j.heliyon.2022.e08865.

J. Ćilerdžić, M. Stajić, and J. Vukojević, “Activity of Mn-Oxidizing Peroxidases of Ganoderma lucidum

Depending on Cultivation Conditions,” Bioresources, vol. 11, no. 1, pp. 95–104, 2016, doi: 10.15376/biores.11.1.95-104.

W. D. H. Schneider, R. C. Fontana, S. Mendonça, F. G. de Siqueira, A. J. P. Dillon, and M. Camassola, “High

level production of laccases and peroxidases from the newly isolated white-rot basidiomycete Marasmiellus

palmivorus VE111 in a stirred-tank bioreactor in response to different carbon and nitrogen sources,” Process

Biochemistry, vol. 69, pp. 1–11, Jun. 2018, doi: 10.1016/j.procbio.2018.03.005.

P. Thamvithayakorn, C. Phosri, N. Pisutpaisal, S. Krajangsang, A. J. S. Whalley, and N. Suwannasai, “Utilization

of oil palm decanter cake for valuable laccase and manganese peroxidase enzyme production from a novel

white-rot fungus, Pseudolagarobasidium sp. PP17-33,” 3 Biotech, vol. 9, no. 11, Nov. 2019, doi: 10.1007/

s13205-019-1945-8.

G. Janusz, K. H. Kucharzyk, A. Pawlik, M. Staszczak, and A. J. Paszczynski, “Fungal laccase, manganese

peroxidase and lignin peroxidase: Gene expression and regulation,” Enzyme Microb Technol, vol. 52, no. 1,

pp. 1–12, Jan. 2013, doi: 10.1016/j.enzmictec.2012.10.003.

A. K. Pandey, S. K. Vishwakarma, A. K. Srivastava, V. K. Pandey, S. Agrawal, and M. P. Singh, “Production of

ligninolytic enzymes by white rot fungi on lignocellulosic wastes using novel pretreatments,” Cell Mol Biol, vol.

, no. 5, pp. 41–45, 2014, doi: 10.14715/cmb/2014.60.5.8.

A. Umar and S. Ahmed, “Optimization, purification and characterization of laccase from Ganoderma leucocontextum along with its phylogenetic relationship,” Sci Rep, vol. 12, no. 1, Dec. 2022, doi: 10.1038/s41598-022-

-z.

Bhosle S, Ranadive K, Bapat G, Garad S, Deshpande G, and Vaidya J, “Taxonomy and Diversity of Ganoderma

from the Western parts of Maharashtra (India),” Mycosphere, 2010, doi: 10.1128/jcm.00430-10.

P. Singh, O. Sulaiman, R. Hashim, L. C. Peng, and R. P. Singh, “Evaluating biopulping as an alternative application on oil palm trunk using the white-rot fungus Trametes versicolor,” Int Biodeterior Biodegradation, vol. 82,

pp. 96–103, Aug. 2013, doi: 10.1016/j.ibiod.2012.12.016.

Y. Naidu et al., “Consolidated evaluation of polysaccharide degradation after oil palm wood pretreatment with

indigenous white-rot hymenomycetes,” Wood Sci Technol, vol. 56, no. 2, pp. 409–435, Mar. 2022, doi: 10.1007/

s00226-022-01366-1.