Current state of cutinases in addressing the issue of single-use plastic degradation

Main Article Content

Marcel Arrieta-Fonseca

Abstract

The widespread consumption of single-use plastics has caused an environmental crisis due to
their overaccumulation in ecosystems. This article explores the current status of cutinases, one
of the main types of enzymes with the potential to degrade single-use plastics. Cutinases (EC
3.1.1.74) are serine hydrolases of the group of α/β hydrolases capable of catalyzing reactions
that degrade polymers, mainly polyethylene terephthalate (PET) and polybutylene adipateco-terephthalate (PBAT), and are produced by bacteria, filamentous fungi and yeasts. Each
enzyme has different characteristics depending on its microorganism of origin, with those of
fungi and yeast being more similar to each other than those of bacteria. Biotechnological tools,
such as synthetic biology, have proven to be innovative strategies capable of improving the
efficiency and stability of cutinases in the degradation of plastics, capable of offering a possible
sustainable solution to the environmental crisis caused by these materials.

Article Details

How to Cite
Arrieta-Fonseca, M. (2024). Current state of cutinases in addressing the issue of single-use plastic degradation. Tecnología En Marcha Journal, 37(9), Pág. 94–102. https://doi.org/10.18845/tm.v37i9.7615
Section
Artículo científico

References

T. Anunobi, “Hazardous effects of plastic wastes on land biodiversity: A review ,” vol. 20, no. 1, pp. 80–86,

Nov. 2022, doi: 10.4314/tzool.v20i1.10.

Y. Chen, A. K. Awasthi, F. Wei, Q. Tan, y J. Li, “Single-use plastics: Production, usage, disposal, and adverse

impacts,” vol. 752, p. 141772, 2021, doi: 10.1016/j.scitotenv.2020.141772.

T. P. Wagner, “Reducing single-use plastic shopping bags in the USA,” vol. 70, pp. 3–12, 2017, doi: 10.1016/j.

wasman.2017.09.003.

N. Singh y T. R. Walker, “Plastic recycling: A panacea or environmental pollution problem,” vol. 2, no. 1, p. 17,

, doi: 10.1038/s44296-024-00024-w.

R. Prieto, “Contaminación ambiental por plásticos durante la pandemia y sus efectos en la salud humana,” vol.

, no. 1, pp. 22–29, Jan. 2023, doi: 10.30944/20117582.2203.

M. J. Valarezo Ulloa y L. Ruiz Virgen, “El reciclaje de plásticos, un reto para lograr una economía circular,” vol.

, no. 2, 2022, doi: 10.54753/cedamaz.v12i2.1265.

A. P. Singh y A. S. Devi, “Microplastics and single use plastics: A curse of over consumerism,” vol. 4, no. 4,

pp. 384–388, 2019, ISSN: 2455-6378.

J. Sandoval y D. Bermúdez, “Degradación del polietilentereftalato por medio de microorganismos,” vol. 85, no.

, pp. 219–229, 2021, doi: 10.23850/22565035.3592.

N. Mohanan, Z. Montazer, P. K. Sharma, y D. B. Levin, “Microbial and Enzymatic Degradation of Synthetic

Plastics,” vol. 11, 2020, doi: 10.3389/fmicb.2020.580709.

V. Tournier et al., “Enzymes’ Power for Plastics Degradation,” vol. 123, no. 9, pp. 5612–5701, 2023, doi:

1021/acs.chemrev.2c00644.

S. Yoshida et al., “A bacterium that degrades and assimilates poly(ethylene terephthalate),” vol. 351, no. 6278,

pp. 1196–1199, Mar. 2016, doi: 10.1126/science.aad6359.

S. Yoshida, K. Hiraga, I. Taniguchi, y K. Oda, “Chapter Nine - Ideonella sakaiensis, PETase, and MHETase:

From identification of microbial PET degradation to enzyme characterization,” vol. 648, pp. 187–205, 2021, doi:

1016/bs.mie.2020.12.007.

G. T. Howard, “Biodegradation of polyurethane: a review,” vol. 49, no. 4, pp. 245–252, 2002, doi: 10.1016/

S0964-8305(02)00051-3.

T. F. Pio y G. A. Macedo, “Cutinases: properties and industrial applications,” vol. 66, pp. 77–95, 2009, doi:

1016/S0065-2164(08)00804-6.

K. Ramamurthy et al., “Is Laccase derived from Pleurotus ostreatus effective in microplastic degradation? A

critical review of current progress, challenges, and future prospects,” vol. 276, p. 133971, 2024, doi: 10.1016/j.

ijbiomac.2024.133971.

P. Pérez-García, D. Danso, H. Zhang, J. Chow, y W. R. Streit, “Chapter Seven - Exploring the global metagenome for plastic-degrading enzymes,” vol. 648, pp. 137–157, 2021, doi: 10.1016/bs.mie.2020.12.022.

S. Hachisuka, J. F. Chong, T. Fujiwara, A. Takayama, Y. Kawakami, y S. Yoshida, “Ethylene glycol metabolism

in the poly(ethylene terephthalate)-degrading bacterium Ideonella sakaiensis,” vol. 106, no. 23, pp. 7867–

, 2022, doi: 10.1007/s00253-022-12244-y.

Y. Yang et al., “Complete bio-degradation of poly(butylene adipate-co-terephthalate) via engineered cutinases,” vol. 14, no. 1, pp. 1645-023-37374–3, Mar. 2023, doi: 10.1038/s41467-023-37374-3.

F. Hasan, A. A. Shah, y A. Hameed, “Industrial applications of microbial lipases,” vol. 39, no. 2, pp. 235–251,

, doi: 10.1016/j.enzmictec.2005.10.016.

A. Gricajeva, A. K. Nadda, y R. Gudiukaite, “Insights into polyester plastic biodegradation by carboxyl ester

hydrolases,” vol. 97, no. 2, pp. 359–380, 2022, doi: 10.1002/jctb.6745.

P. J. Baker, C. Poultney, Z. Liu, R. Gross, y J. K. Montclare, “Identification and comparison of cutinases for

synthetic polyester degradation,” vol. 93, no. 1, pp. 229–240, 2012, doi: 10.1007/s00253-011-3402-4.

S. Chen, L. Su, J. Chen, y J. Wu, “Cutinase: Characteristics, preparation, and application,” vol. 31, no. 8, pp.

–1767, 2013, doi: 10.1016/j.biotechadv.2013.09.005.

X. Liang y H. Zou, “Biotechnological Application of Cutinase: A Powerful Tool in Synthetic Biology,” vol. 1, no.

, p. 64, 2023, doi: 10.3390/synbio1010004.

M. Cambillau y C. Chrislaine, “Fusarium solani cutinase is a lipolytic enzyme with a catalytic serine accessible

to solvent,” 1994, doi:10.2210/pdb1cus/pdb.

S.-J. Won, J. H. Yim, y H. K. Kim, “Synthesis of Short-Chain Alkyl Butyrate through Esterification Reaction Using

Immobilized Rhodococcus Cutinase and Analysis of Substrate Specificity through Molecular Docking,” vol. 33,

no. 2, pp. 268–276, Feb. 2023, doi: 10.4014/jmb.2211.11022.

National Center for Biotechnology Information, “F. solani pisi (fungus) cutinase mRNA, complete cds,

Accession No. K02640,” 1993. Available: https://www.ncbi.nlm.nih.gov/nuccore/K02640.

National Center for Biotechnology Information, “Cutinase [Fusarium solani], Accession No. AAA33334,” 1993.

Available: https://www.ncbi.nlm.nih.gov/protein/AAA33334.

B. Sui et al., “Recent advances in the biodegradation of polyethylene terephthalate with cutinase-like enzymes,” vol. 14, p. 1265139, Oct. 2023, doi: 10.3389/fmicb.2023.1265139.

Y. Liu et al., “Catalytic Features and Thermal Adaptation Mechanisms of a Deep Sea Bacterial Cutinase-Type

Poly(Ethylene Terephthalate) Hydrolase,” vol. 10, 2022, doi: 10.3389/fbioe.2022.865787.

X. Liang y H. Zou, “Biotechnological Application of Cutinase: A Powerful Tool in Synthetic Biology,” vol. 1, no.

, p. 64, 2023, doi: 10.3390/synbio1010004.

Y. Yang, P. Jiang, J. Huang, C. Chen, y R. Guo, , “The structure of engineered TfCut S130A in complex with

MHET,” 2023, doi: 10.2210/pdb7xtt/pdb.

K. Masaki, N.R. Kamini, H. Ikeda, H. Iefuji, H. Kondo, M. Suzuki y S. Tsuda, “A novel cutinase-like protein from

Cryptococcus sp.,” 2006, doi: 10.2210/pdb2czq/pdb.

Y. Yang et al., “Complete bio-degradation of poly(butylene adipate-co-terephthalate) via engineered cutinases,” vol. 14, no. 1, p. 1645, 2023, doi: 10.1038/s41467-023-37374-3.

D. Castro-Ochoa et al., “ANCUT2, an Extracellular Cutinase from Aspergillus nidulans Induced by Olive Oil,”

vol. 166, no. 5, pp. 1275–1290, 2012, doi: 10.1007/s12010-011-9513-7.

K. N. Hellesnes, S. Vijayaraj, P. Fojan, E. Petersen, y G. Courtade, “Biochemical Characterization and NMR

Study of a PET-Hydrolyzing Cutinase from Fusarium solani pisi,” vol. 62, no. 8, pp. 1369–1375, 2023, doi:

1021/acs.biochem.2c00619.

D. Martín-González, C. de la Fuente Tagarro, A. De Lucas, S. Bordel, y F. Santos-Beneit, “Genetic Modifications

in Bacteria for the Degradation of Synthetic Polymers: A Review,” vol. 25, no. 10, p. 5536, May 2024, doi:

3390/ijms25105536.

Z. Liu, Y. Zhang, y J. Wu, “Enhancement of PET biodegradation by anchor peptide-cutinase fusion protein,”

vol. 156, 2022, doi: 10.1016/j.enzmictec.2022.110004.

Q. Li et al., “Computational design of a cutinase for plastic biodegradation by mining molecular dynamics

simulations trajectories,” vol. 20, pp. 459–470, 2022, doi: 10.1016/j.csbj.2021.12.042.