Costa Rican agriculture and livestock modern Biotechnology and genome editing legal framework

Main Article Content

Jason Pérez
Giovanni Garro-Monge
Luis Barboza-Fallas
Alejandro Hernández-Soto
Andrés Gatica-Arias

Abstract

Biotechnology catalyzes development in the agricultural and livestock sectors, exerting significant
influence on the world economy and advancing sustainable development goals. Examples of its
considerable impacts include biocontrol, food security, and carbon sequestration. Costa Rica
stands out in the region for its extensive research and development efforts in biotechnology,
boasting 87 companies and 42 research centers and creating jobs equivalent to 1.05% of the
national GDP. Since 1998, the country has established a legal framework to regulate the use of
conventional, organic, living-modified organisms (LMOs) and gene-edited organisms, promoting
economic growth rooted in biotechnology. This legal framework includes mechanisms for
managing LMOs and facilitating inter-institutional coordination for evaluating and granting use
permits. The present article elaborates on Costa Rica’s modern biotechnology and genome
editing regulatory framework, encompassing manuals, guidelines, and forms to assist users
in using LMOs. Regarding genome editing, Costa Rican legislation shares similarities with
current legislation in several countries. Genome Editing breed organisms are compared and
defined as equivalent to those obtained from conventional methods. The agricultural sector’s
favorable perception of this technology further enhances the country’s prospects for economic
development. Consequently, Costa Rica provides a friendly environment for biotechnologydriven economic growth and investment, aligning with sustainable development goals.

Article Details

How to Cite
Pérez, J., Garro-Monge, G., Barboza-Fallas, L., Hernández-Soto, A., & Gatica-Arias, A. (2024). Costa Rican agriculture and livestock modern Biotechnology and genome editing legal framework. Tecnología En Marcha Journal, 37(9), Pág 14–31. https://doi.org/10.18845/tm.v37i9.7607
Section
Artículo científico

References

M. A. Steinwand, P. C. Ronald, “Crop biotechnology and the future of food,” Nat Food, vol. 1, no. 5, pp.

–283, May 2020, doi: 10.1038/s43016-020-0072-3.

G. Brookes, “Farm income and production impacts from the use of genetically modified (GM) crop technology

-2020,” GM Crops Food, vol. 13, no. 1, pp. 171–195, Dec. 2022, doi: 10.1080/21645698.2022.2105626.

E. Mora-Álvarez, “Mapeo de Biotecnología: Caracterización de la industria,” 2019. [En línea]. Disponible en:

http://sistemas.procomer.go.cr/DocsSEM/603DD5ED-88F2-4A4E-A819-74FA70D19CA6.pdf

R. E. Goodman, “Twenty-eight years of GM Food and feed without harm: why not accept them?,” GM Crops

Food, vol. 15, no. 1, pp. 40–50, Dec. 2024, doi: 10.1080/21645698.2024.2305944.

G. Garro-Monge, “Inocuidad de cultivos y alimentos biotecnológicos, ‘20 años de comercialización,’” Revista

Tecnología en Marcha, vol. 30, no. 2, p. 75, 2017, doi: 10.18845/tm.v30i2.3198.

A. Vega Rodríguez, C. Rodríguez-Oramas, E. Sanjuán Velázquez, A. Hardisson de la Torre, C. Rubio

Armendáriz, C. Carrascosa Iruzubieta, “Myths and Realities about Genetically Modified Food: A Risk-Benefit

Analysis,” Applied Sciences, vol. 12, no. 6, p. 2861, Mar. 2022, doi: 10.3390/app12062861.

J. E. Ibarra, Ma. C. Del Rincón Castro, “Myths and realities on insect-resistant transgenic plants,” Acta Univ,

vol. 25, no. NE-3, pp. 13–23, 2015, doi: 10.15174/au.2015.905.

National Academies of Sciences Engineering and Medicine, Genetically Engineered Crops: Experiences and

Prospects. Washington, D.C.: National Academies Press, 2016. doi: 10.17226/23395.

G. Macaya, “Towards the Implementation of Biosafety Regulations in Costa Rica”, in Biosafety for Sustainable

Agriculture: Sharing Biotechnology Regulatory Experiences of the Western Hemisphere (Krattiger, A.F. and A.

Rosemarin, eds.). ISAAA: Ithaca & SEI: Stockholm. 1994.

A. Gatica-Arias, “The regulatory current status of plant breeding technologies in some Latin American and the

Caribbean countries,” Plant Cell, Tissue and Organ Culture (PCTOC), vol. 141, no. 2, pp. 229–242, 2020, doi:

1007/s11240-020-01799-1.

D. M. Macall, J. Madrigal-Pana, S. J. Smyth, and A. Gatica Arias, “Costa Rican consumer perceptions of geneediting,” Heliyon, vol. 9, no. 8, p. e19173, Aug. 2023, doi: 10.1016/j.heliyon.2023.e19173.

A. Gatica-Arias, M. Valdez-Melara, G. Arrieta-Espinoza, F. J. Albertazzi-Castro, J. Madrigal-Pana, “Consumer

attitudes toward food crops developed by CRISPR/Cas9 in Costa Rica,” Plant Cell, Tissue and Organ Culture

(PCTOC), vol. 139, no. 2, pp. 417–427, 2019, doi: 10.1007/s11240-019-01647-x.

A. Hernández-Soto, J. P. Delgado-Navarro, M. Benavides-Acevedo, S. A. Paniagua, A. Gatica-Arias, “NTH2

_1272delTA Gene Disruption Results in Salt Tolerance in Saccharomyces cerevisiae,” Fermentation, Vol.

, Page 166, vol. 8, no. 4, p. 166, Apr. 2022, doi: 10.3390/FERMENTATION8040166.

A. Gatica-Arias, A. Hernández-Soto, “Mini Curso de Edición génica,” in LXV Reunión Programa Cooperativo

Centroamericano para el Mejoramiento de Cultivos y Animales (PCCMA), Ministerio de Agricultura Ganadería

y Alimentación (MAGA), Ed., Guatemala, 2023.

A. Hernández-Soto, F. Echeverría-Beirute, A. Abdelnour-Esquivel, M. Valdez-Melara, J. Boch, A. Gatica-Arias,

“Rice breeding in the new era: Comparison of useful agronomic traits,” Curr Plant Biol, vol. 27, no. June, p.

, Sep. 2021, doi: 10.1016/j.cpb.2021.100211.

F. M. Romero, A. Gatica-Arias, “CRISPR/Cas9: Development and Application in Rice Breeding,” Rice Sci, vol.

, no. 5, pp. 265–281, Sep. 2019, doi: 10.1016/j.rsci.2019.08.001.

R. Rojas-Vásquez, A. Gatica-Arias, “Use of genome editing technologies for genetic improvement of crops

of tropical origin,” Plant Cell, Tissue and Organ Culture (PCTOC), vol. 140, no. 1, pp. 215–244, 2020, doi:

1007/s11240-019-01707-2.

C. Aguilar-Bartels, P. Quirós-Segura, A. García-Piñeres, A. Gatica-Arias, G. Arrieta-Espinoza, “Key aspects

for the genetic transformation of rice (Oryza sativa L.) subspecies indica by Agrobacterium tumefaciens,”

Agronomia Mesoamericana, vol. 32, no. 3, pp. 764–778, 2021, doi: 10.15517/AM.V32I3.44978.

J. Villalta-Villalobos, A. Gatica-Arias, “A look back in time: Genetic improvement of coffee through the application of biotechnology,” Agronomia Mesoamericana, vol. 30, no. 2, pp. 577–599, 2019, doi: 10.15517/

am.v30i2.34173.

R. Rojas Vásquez, “Edición del gen de la enzima trehalasa mediante CRISPR-Cas9 en arroz subsp. indica var.

CR-5272,” Universidad de Costa Rica, 2022. [En línea]. Disponible en: https://hdl.handle.net/10669/87766

A. Sebiani-Calvo, “Desarrollo de un sistema de edición genética CRISPR/CAS9 in planta en embriones maduros de arroz (Oryza sativa L.) mediante Agrobacterium tumefaciens,” Universidad de Costa Rica, 2023. [En

línea]. Disponible en: https://hdl.handle.net/10669/90585

Corte Suprema de Justicia, “Res. N° 2014015017,” BOLETIN JUDICIAL, vol. 55, pp. 1–25, 2015.

Procuraduría General de la República (PGR), “PGR-C-42-2022,” p. 19, 2022, [En línea]. Disponible en: https://

www.pgr.go.cr/servicios/pronunciamientos-pgr/pronunciamientos-2022/dictamenes-2022/

Procuraduría General de la República (PGR), PGR-C-183-2022. 2022, p. 15p. [En línea]. Disponible en:

https://www.pgr.go.cr/servicios/pronunciamientos-pgr/pronunciamientos-2022/dictamenes-2022/

Ministerio de Agricultura y Ganadería (MAG), “Política Pública para el Sector Agropecuario Costarricense

-2032,” 2023. [En línea]. Disponible en: www.mag.go.cr

Servicio Fitosanitario del Estado (SFE), “Procedimientos de la Unidad de Organismos vivos modificados del

SFE (UOGM).” [En línea]. Disponible en: https://www.sfe.go.cr/SitePages/OVM/Procedimientos.aspx

OECD Working Group, Safety Assessment of Transgenic Organisms in the Environment, Volume 10, vol. 10. in

Harmonisation of Regulatory Oversight in Biotechnology, vol. 10. OECD, 2023. doi: 10.1787/62ed0e04-en.

Y. Devos et al., “Using problem formulation for fit-for-purpose pre-market environmental risk assessments of

regulated stressors,” EFSA Journal, vol. 17, no. S1, pp. 1–31, 2019, doi: 10.2903/j.efsa.2019.e170708.

A. Raybould, “Hypothesis-Led Ecological Risk Assessment of GM Crops to Support Decision-Making About

Product Use,” A. Chaurasia, D. L. Hawksworth, and M. Pessoa de Miranda, Eds., Cham: Springer International

Publishing, 2020, pp. 305–342. doi: 10.1007/978-3-030-53183-6_14.

Servicio Fitosanitario del Estado (SFE), Convivencia entre cultivos que utilizan diferentes tecnologías de producción agrícola. San José, Costa Rica, 2013.

Servicio Fitosanitario del Estado (SFE), Orientación y Guía para el cumplimiento del Reglamento de Auditorías

en Bioseguridad Agrícola N° 32486-MAG y normativa relacionada. San José, Costa Rica: Ministerio de

Agricultura y Ganadería (MAG), 2014. [En línea]. Disponible en: https://www.mag.go.cr/bibliotecavirtual/F30-

pd

A. Hernández-Soto, F. Echeverría-Beirute, A. Abdelnour-Esquivel, M. Valdez-Melara, J. Boch, A. Gatica-Arias,

“Rice breeding in the new era: Comparison of useful agronomic traits,” Current Plant Biology, vol. 27. Elsevier

B.V., Sep. 01, 2021. doi: 10.1016/j.cpb.2021.100211.

D. Fernández Ríos, N. Benítez Candia, M. C. Soerensen, M. F. Goberna, A. A. Arrúa, “Regulatory landscape

for new breeding techniques (NBTs): insights from Paraguay,” Front Bioeng Biotechnol, vol. 12, no. January,

pp. 1–6, Jan. 2024, doi: 10.3389/fbioe.2024.1332851.

T. Tsanova, L. Stefanova, L. Topalova, A. Atanasov, I. Pantchev, “DNA-free gene editing in plants: a

brief overview,” Biotechnology and Biotechnological Equipment, vol. 35, no. 1, pp. 131–138, 2021, doi:

1080/13102818.2020.1858159.

S. J. Smyth, “Contributions of Genome Editing Technologies Towards Improved Nutrition, Environmental

Sustainability and Poverty Reduction,” Front Genome Ed, vol. 4, no. March, pp. 1–9, 2022, doi: 10.3389/

fgeed.2022.863193

Most read articles by the same author(s)

1 2 3 4 > >>