Use of gamma rays to produce Echeveria sp. mutants to boost the future profit of the national producer

Main Article Content

Girlany Quesada-Cordero
Frank Carlos Barrientos-Alfaro
Walter Vargas-Segura
Jason Perez

Abstract

Radioinduced mutagenesis is a powerful tool for enhancing genetic variability in plants, enabling the induction of desired traits, absent in nature or lost through evolution and breeding. This study aimed to generate mutant lines of Echeveria sp. using gamma rays, expanding the variety of succulents available in Costa Rica. A disinfection treatment using 20 min of incubation in NaOCl resulted in 46.9 % aseptic explants. The medium containing 50 % MS salts and 6 g.L-1 of gelling agent proved to be the most effective for explant multiplication and hyperhydricity reduction. Leaves from Echeveria sp. vitroplants were exposed to gamma radiation doses of 0, 20, 40, 60, 80 and 100 Gy. The LD50 for vitroplant leaves was determined to be 23.16 Gy. Irradiated explants were subcultured in multiplication medium to promote sprouting and, after six subcultures, successfully acclimatized in greenhouse conditions. The established irradiation and micropropagation protocols proved to be effective for mutation induction in Echeveria sp., offering an innovative resource for developing new ornamental varieties and supporting their adoption by succulent producers.

Article Details

How to Cite
Quesada-Cordero, G., Barrientos-Alfaro, F. C., Vargas-Segura, W., & Perez, J. (2025). Use of gamma rays to produce Echeveria sp. mutants to boost the future profit of the national producer. Tecnología En Marcha Journal, 38(4), Pág. 87–98. https://doi.org/10.18845/tm.v38i4.7593
Section
Artículo científico

References

[1] G. Palomino, J. Martínez-Ramón, V. Cepeda-Cornejo, M. Ladd-Otero, P. Romero y J. Reyes-Santiago, “Chromosome number, ploidy level, and nuclear DNA content in 23 species of Echeveria (Crassulaceae)”, Genes, vol. 12, no. 12, pp. 1-25, 2021. https://doi.org/10.3390/genes12121950

[2] C. O. Morales, “Origen, historia natural y usos de las plantas introducidas en Costa Rica”, Cuadernos de Investigación UNED, vol. 12, no. 2, pp. 1-125, 2020. http://dx.doi.org/10.22458/urj.v12i2.3098

[3] Y. Oladosu et al., “Principle and application of plant mutagenesis in crop improvement: A review”, Biotechnology and Biotechnological Equipment, vol. 30, no. 1, pp. 1-16, 2016. https://doi.org/10.1080/13102818.2015.1087333

[4] A. Zúñiga Orozco y A. Carrodeguas González, “Echeveria (Crassulaceae): Potencial para la mejora genética como ornamental”, Avances en Investigación Agropecuaria, vol. 25, no. 3, pp. 58-81, 2021. https://doi.org/10.53897/RevAIA.21.25.16

[5] F. J. Novak y H. Brunner, “Fitotecnia: Tecnología de mutación inducida para el mejoramiento de los cultivos”, Boletín de OIEA, vol. 4, pp. 25-33., 1992.

[6] H. Alfaro, “Research aims to increase crop drought tolerance using biotechnology”, 2021. [Online]. Disponible en: https://www.unr.edu/nevada-today/news/2021/john-cushman-grant. [Accesado May. 21, 2024].

[7] C. Ayala-González y E. N. Obledo-Vázquez, “Comparación de la tasa de propagación in vitro y ex vitro de la especie endémica de Michoacán, Echeveria purhepecha”, XII Encuentro de la Participación de la Mujer en la Ciencia, 2015, pp. 1-7.

[8] M. G. Godoy Beltrán, “Morfogénesis in vitro de Echeveria laui Moran & Meyrán”, Tesis de maestría, Instituto de Enseñanza e Investigación en Ciencias Agrícolas, Montecillo, Estado de México, 2021.

[9] S. Hernández-Múñoz, M. Pedraza-Santos, P. A. López, J. Gómez-Sanabria y J. Morales-García, “Mutagenesis in the improvement of ornamental plants”, Revista Chapingo - Serie Horticultura, vol. 25, no. 3, pp. 151-167, 2019. https://doi.org/10.5154/r.rchsh.2018.12.022

[10] T. Murashige y F. Skoog, “ A revised medium for rapid growth and bioassays with tobacco tissue cultures”, Physiologia Plantarum, vol. 15, no. 3, pp. 473-497, 1962. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

[11] L. Gamborg, A. Miller y K. Ojima, “Nutrient requirements of suspension cultures of soybean root cells”, Experimental Cell Research, vol. 50, no. 1, pp. 151-158, 1968. https://doi.org/10.1016/0014-4827(68)90403-5

[12] D. H. Kim, J. Gopal y I. Sivanesan, “Nanomaterials in plant tissue culture: The disclosed and undisclosed”, RSC Advances, vol. 7, pp. 36492-36505, 2017. https://doi.org/10.1039/C7RA07025J

[13] L. -Z. Deng et al., “Emerging chemical and physical disinfection technologies of fruits and vegetables: A comprehensive review”, Critical Reviews in Food Science and Nutrition, vol. 60, no. 15, pp. 2481-2508, 2020. https://doi.org/10.1080/10408398.2019.1649633

[14] M. Uchikawa Graziano, K. Uchikawa Graziano, F. Morais Gomes Pinto, C. Quartim de Moraes Bruna, R. Queiroz de Souza y C. A. Lascala, “Eficacia de la desinfección con alcohol al 70% (p/v) de superficies contaminadas sin limpieza previa”, Revista Latino-Americana de Enfermagem, vol. 21, no. 2, pp. 1-6, 2013. https://doi.org/10.1590/S0104-11692013000200020

[15] Subdirección de Salud Ambiental, “Reducción de riesgos asociados al uso de productos plaguicidas y desinfectantes”, 2020. [Online]. Disponible en: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/abece-plaguicidas-desinfectantes.pdf. [Accesado May. 27, 2024].

[16] S. N. Ali y R. Mahmood, “Sodium chlorite increases production of reactive oxygen species that impair the antioxidant system and cause morphological changes in human erythrocytes”, Environmental Toxicology, vol. 32, no. 4, pp. 1343-1353, 2017. https://doi.org/10.1002/tox.22328

[17] B. Indacochea et al., “Evaluación de medios de cultivo In vitro para especies forestales nativas en peligro de extinción en Ecuador”, Agronomía Costarricense, vol. 42, no. 1, pp. 63-89, 2018. ISSN: 0377-9424.

[18] O. B. Polivanova y V. A. Bedarev, “Hyperhydricity in plant tissue culture”, Plants, vol. 11, no. 23, pp. 1-12, 2022. https://doi.org/10.3390/plants11233313

[19] D. Kiani, A. Borzouei, S. Ramezanour, H. Soltanloo y S. Saadati, “Application of gamma irradiation on morphological, biochemical, and molecular aspects of wheat (Triticum aestivum L.) under different seed moisture contents”, Scientific Reports, vol. 12, pp. 1-10, 2022. https://doi.org/10.1038/s41598-022-14949-6

[20] S. Penna y S. G. Bhagwat, “Mutagenesis and selection: Reflections on the in vivo and in vitro approaches for mutant development” en Mutation Breeding for Sustainable Food Production and Climate Resilience, S. Penna y S. M. Jain, Eds. Singapore: Springer, 2023, pp. 99-127. https://doi.org/10.1007/978-981-16-9720-3_4

[21] C. Genoud-Gourichon, H. Sallanon y A. Coudret, “Effect of sucrose, agar, irradiance and CO2 concentration during rooting phase on the acclimation of Rosa hybrida plantlets to ex vitro conditions”, Photosynthetica, 32(2), 263-270, 1996. ISSN: 0300-3604.

[22] J. Marín, “High survival rates during acclimatization of micropropagated fruit tree rootstocks by increasing exposures to low relative humidity”, Acta Horticulturae, vol. 616, pp. 139-142, 2003. https://doi.org/10.17660/ActaHortic.2003.616.13