Autophagy dysfunction in Alzheimer’s disease: Biochemistry and therapeutic future
Main Article Content
Abstract
Alzheimer’s Disease (AD), which is the leading cause of dementia, is characterized by the accumulation of β-amyloid and neurofibrillary tangles, which cause cognitive impairment. In Latin America and the Caribbean, AD represents between 50% and 84% of dementia cases, with projections indicating an increase to 13.7 million cases by 2050. The process of cellular autophagy, a vital process that maintains homeostasis by degrading damaged cells, is essential for neuronal health. Autophagy dysfunction is related to the accumulation of misfolded proteins in AD. Although autophagy is initially activated as a protective response against β-amyloid, its accumulation blocks lysosomal degradation, resulting in the formation of neurotoxic oligomers and amyloid plaques, causing inflammation and neuronal damage. Alterations in key proteins such as Beclin 1, PICALM and PSEN-1 aggravate Aβ accumulation, affecting ATP production and contributing to neurodegeneration. The effectiveness of current treatments remains a subject of debate within the scientific community due to their limitations, including the difficulty in replicating the human disease in animal models, insufficient penetration into the central nervous system, and potential adverse effects. Therefore, its therapeutic future focuses primarily on expanding clinical trials by studying different pathological pathways and targeting biomarkers for early disease detection.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación y pueda editarlo, reproducirlo, distribuirlo, exhibirlo y comunicarlo en el país y en el extranjero mediante medios impresos y electrónicos. Asimismo, asumen el compromiso sobre cualquier litigio o reclamación relacionada con derechos de propiedad intelectual, exonerando de responsabilidad a la Editorial Tecnológica de Costa Rica. Además, se establece que los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
References
[1] A. Litwiniuk, G. R. Juszczak, A. M. Stankiewicz, and K. Urbańska, “The role of glial autophagy in Alzheimer’s disease,” Molecular Psychiatry, vol. 28, no. 11, pp. 4528–4539, Sep. 2023, doi: https://doi.org/10.1038/s41380-023-02242-5
[2] Z. Zhang, X. Yang, Y. Q. Song, and J. Tu, “Autophagy in Alzheimer’s disease pathogenesis: Therapeutic potential and future perspectives,” Ageing research reviews, vol. 72, p. 101464, Dec. 2021, doi: https://doi.org/10.1016/j.arr.2021.101464
[3] A. Rahman, S. Rahman, H. Rahman, M. Rasheduzzaman, A. N. M Mamun-Or-Rashid, J. Uddin, R. Rahman, H. Hwang, M. G Pang, and H. Rhim, “Modulatory Effects of Autophagy on APP Processing as a Potential Treatment Target for Alzheimer’s Disease,” Biomedicines, vol. 9, no. 1, p. 5, 2021, doi: https://doi.org/10.3390/biomedicines9010005
[4] F. Lopera, N. Custodio, M. Rico-Restrepo, R. F. Allegri, J. D. Barrientos, E. García-Batres, I. L. Calandri, C. Calero-Moscoso, P. Caramelli, J. C. Duran-Quiroz, A. M. Jansen, A. J. Mimenza-Alvarado, R. Nitrini, J. F. Parodi, C. Ramos, A. Slachevsky, and S. M. Dozzi-Brucki, “A task force for diagnosis and treatment of people with Alzheimer ‘s disease in Latin America,” Frontiers in Neurology, vol. 14, Jul. 2023, doi: https://doi.org/10.3389/fneur.2023.1198869
[5] Pan American Health Organization, “Dementia in Latin America and the Caribbean: Prevalence, Incidence, Impact, and Trends over Time,” Washington, DC: PAHO. Accessed: Nov. 9, 2024. [Online]. Available: https://doi.org/10.37774/9789275126653
[6] K.Wiles, C. Wilson, J. M. Ramiro-Diaz, G. Kallifatidis, and S. Mukhopadhyay, “The Neuron,” in Anatomy and Physiology I: An Interactive Histology Atlas, 2024. [Online]. Available: https://pressbooks.pub/aandp1histologyatlasandworkbook/chapter/the-neuron/
[7] S. Tiwari, V. Atluri, A. Kaushik, A. Yndart, and M. Nair, “Alzheimer’s disease: pathogenesis, diagnostics, and therapeutics,” International Journal of Nanomedicine, vol. 14, pp. 5541-5554, Jul. 2019, doi: https://doi.org/10.2147/IJN.S200490
[8] D. Barragán-Martínez, M. A. García-Soldevilla, A. Parra-Santiago, and J. Tejeiro-Martínez, “Enfermedad de Alzheimer,” Medicine, vol. 12, no. 74, pp. 4338-4346, Mar. 2019, doi: https://doi.org/10.1016/j.med.2019.03.012
[9] Z. Breijyeh and R. Karaman, “Comprehensive Review on Alzheimer’s Disease: Causes and Treatment,” Molecules, vol. 25, no. 24, p. 5789, Dec. 2020, doi: https://doi.org/10.3390/molecules25245789
[10] S. Meftah and J. Gan, “Alzheimer’s disease as a synaptopathy: Evidence for dysfunction of synapses during disease progression,” Frontiers in Synaptic Neuroscience, vol. 15, p. 1129036, Mar. 2023, doi: https://doi.org/10.3389/fnsyn.2023.1129036
[11] M. Wu, M. Zhang, X. Yin, K. Chen, Z. Hu, Q. Zhou, X. Cao, Z. Chen, and D. Liu, “The role of pathological tau in synaptic dysfunction in Alzheimer’s diseases,” Translational Neurodegeneration, vol. 10, no. 45, Nov. 2021, doi: https://doi.org/10.1186/s40035-021-00270-1
[12] X. Pang, X. Zhang, Y. Jiang, Q. Su, Q. Li, and Z. Li, “Autophagy: Mechanisms and Therapeutic Potential of Flavonoids in Cancer,” Biomolecules, vol. 11, no. 2, p. 135, Jan. 2021, doi: https://doi.org/10.3390/biom11020135
[13] A. S. Gross and M. Graef, “Mechanisms of Autophagy in Metabolic Stress Response,” Journal of Molecular Biology, vol. 432, no. 1, pp. 28–52, Jan. 2020, doi: https://doi.org/10.1016/j.jmb.2019.09.005
[14] N. Peker and D. Gozuacik, “Autophagy as a Cellular Stress Response Mechanism in the Nervous System,” Journal of Molecular Biology, vol. 432, no. 8, pp. 2560–2588, Apr. 2020, doi: https://doi.org/10.1016/j.jmb.2020.01.017
[15] H. Morishita and N. Mizushima, “Diverse Cellular Roles of Autophagy,” Annual Review of Cell and Developmental Biology, vol. 35, no. 1, pp. 453–475, Oct. 2019, doi: https://doi.org/10.1146/annurev-cellbio-100818-125300
[16] H. Feng, N. Wang, N. Zhang, and H. Liao, “Alternative autophagy: mechanisms and roles in different diseases,” Cell Commun Signal, vol. 20, no. 1, p. 43, Dec. 2022, doi: https://doi.org/10.1186/s12964-022-00851-1
[17] Y. Li, Z. Hong, and R. Sheng, “The Multiple Roles of Autophagy in Neural Function and Diseases,” Neuroscience Bullet, vol. 40, pp. 363-382, Oct. 2023, doi: https://doi.org/10.1007/s12264-023-01120-y
[18] N. H. Ali, H. M. Al-kuraishy, A. I. Al-Gareeb, S. A. Alnaaim, A. Alexiou, M. Papadakis, H. M. Saad, and G. E. Batiha, “Autophagy and autophagy signaling in Epilepsy: possible role of autophagy activator,” Molecular Medicine, vol. 29, no. 142, Oct. 2023, doi: https://doi.org/10.1186/s10020-023-00742-2
[19] A. Fassio, A. Falace, A. Esposito, D. Aprile, R. Guerrini, and F. Benfenati, “Emerging Role of the Autophagy/Lysosomal Degradative Pathway in Neurodevelopmental Disorders With Epilepsy,” Frontiers in Cellular Neuroscience, vol. 14, Mar. 2020, doi: https://doi.org/10.3389/fncel.2020.00039
[20] D. R. Hernández-Espinosa, V. Barrera-Morín, O. Briz-Tena, E. A. González-Herrera, K. D. Laguna-Maldonado, A. S. Jardínez-Díaz, M. Sánchez-Olivares, and D. Matuz-Mares, “El papel de las especies reactivas de oxígeno y nitrógeno en algunas enfermedades neurodegenerativas,” Revista de la Facultad de Medicina, vol. 62, no. 3, pp. 6-19, May 2019, doi: https://doi.org/10.22201/fm.24484865e.2019.62.3.03
[21] J. Poejo, J. Salazar, A. M. Mata, and C. Gutierrez-Merino, “The relevance of amyloid Β-Calmodulin complexation in neurons and brain degeneration in Alzheimer’s disease,” International Journal of Molecular Sciences, vol. 22, no. 9, p. 4976, May 2021, doi: https://doi.org/10.3390/ijms22094976
[22] M. Hasegawa, “Structure of NFT: Biochemical Approach,” Advances in Experimental Medicine and Biology, vol. 1184, pp. 23–34, Jan. 2019, doi: https://doi.org/10.1007/978-981-32-9358-8_2
[23] V. Cecarini et al., “Neuroprotective effects of p62(SQSTM1)-engineered lactic acid bacteria in Alzheimer’s disease: a pre-clinical study,” Aging, vol. 12, no. 16, pp. 15995–16020, Aug. 2020, doi: https://doi.org/10.18632/aging.103900
[24] K. Ando et al., “Picalm reduction exacerbates tau pathology in a murine tauopathy model,” Acta Neuropathologica, vol. 139, no. 4, pp. 773–789, Jan. 2020, doi: https://doi.org/10.1007/s00401-020-02125-x
[25] S. Raut, R. Patel, and A. J. Al-Ahmad, “Presence of a mutation in PSEN1 or PSEN2 gene is associated with an impaired brain endothelial cell phenotype in vitro,” Fluids and Barriers of the CNS, vol. 18, no. 1, p. 3, Jan. 2021, doi: https://doi.org/10.1186/s12987-020-00235-y
[26] A. Álvarez-Castillo, J. M. Rodríguez-Alfaro, and A. Salas-Boza, “Influencia de la enfermedad de Alzheimer en los sistemas de neurotransmisión sináptica,” Revista Médica Sinergia, vol. 5, no. 4, p. e442, Apr. 2020, doi: https://doi.org/10.31434/rms.v5i4.442
[27] D. Rapaka, V. R. Bitra, S. R. Challa, and P. C. Adiukwu, “mTOR signaling as a molecular target for the alleviation of Alzheimer’s disease pathogenesis,” Neurochemistry International, vol. 155, p. 105311, Feb. 2022, doi: https://doi.org/10.1016/j.neuint.2022.105311
[28] H. Querfurth and H. K. Lee, “Mammalian/mechanistic target of rapamycin (mTOR) complexes in neurodegeneration,” Molecular Neurodegeneration, vol. 16, no. 1, Jul. 2021, doi: https://doi.org/10.1186/s13024-021-00428-5
[29] D. Agarwal, R. Kumari, A. Ilyas, S. Tyagi, R. Kumar, and N. K. Poddar, “Crosstalk between epigenetics and mTOR as a gateway to new insights in pathophysiology and treatment of Alzheimer’s disease,” International Journal Of Biological Macromolecules, vol. 192, pp. 895-903, Dec. 2021, doi: https://doi.org/10.1016/j.ijbiomac.2021.10.026
[30] M. Castellazzi et al., “Autophagy and mitophagy biomarkers are reduced in sera of patients with Alzheimer’s disease and mild cognitive impairment,” Scientific Reports, vol. 9, no. 1, p. 20009, Dec. 2019, doi: https://doi.org/10.1038/s41598-019-56614-5
[31] Q. Cai and D. Ganesan, “Regulation of neuronal autophagy and the implications in neurodegenerative diseases,” Neurobiology Of Disease, vol. 162, p. 105582, Jan. 2022, doi: https://doi.org/10.1016/j.nbd.2021.105582
[32] N. Rodríguez-Espinosa, M. G. Colaço-Harmand, and M. A. Moro-Miguel, “Uso de antipsicóticos en los pacientes con demencia en España: comparación con la prescripción de los inhibidores de la acetilcolinesterasa y de la memantina, y análisis de las asociaciones,” Revista Española de Geriatría y Gerontología, vol. 59, no. 2, p. 101446, Mar. 2024, doi: https://doi.org/10.1016/j.regg.2023.101446
[33] J. Cummings, A. M. L. Osse, D. Cammann, J. Powell, and J. Chen, “Anti-Amyloid Monoclonal Antibodies for the Treatment of Alzheimer’s Disease,” BioDrugs, vol. 38, no. 1, pp. 5-22, Nov. 2023, doi: https://doi.org/10.1007/s40259-023-00633-2
[34] I. Tanida, T. Ueno, and E. Kominami, “LC3 and Autophagy,” Methods in molecular biology, vol. 445, pp. 77-88, 2008, doi: https://doi.org/10.1007/978-1-59745-157-4_4
[35] Promega Corporation, “Autophagy Detection | LC3 Conversion assay,” Worldwide Promega. Accessed: Nov. 10, 2024. [Online]. Available: https://worldwide.promega.com/es-es/products/cell-health-assays/autophagy/
[36] T. K. S. Ng, C. S. H. Ho, W. W. S. Tam, E. H. Kua, and R. C. Ho, “Decreased Serum Brain-Derived Neurotrophic Factor (BDNF) Levels in Patients with Alzheimer’s Disease (AD): A Systematic Review and Meta-Analysis,” International Journal Of Molecular Sciences, vol. 20, no. 2, p. 257, Jan. 2019, doi: https://doi.org/10.3390/ijms20020257
[37] S. Arora, T. Kanekiyo, and J. Singh, “Functionalized nanoparticles for brain targeted BDNF gene therapy to rescue Alzheimer’s disease pathology in transgenic mouse model,” International Journal Of Biological Macromolecules, vol. 208, pp. 901-911, May 2022, doi: https://doi.org/10.1016/j.ijbiomac.2022.03.203
[38] M. S. Pádua, J. L. Guil-Guerrero, J. A. M. Prates, and P. A. Lopes, “Insights on the Use of Transgenic Mice Models in Alzheimer’s Disease Research,” International Journal Of Molecular Sciences, vol. 25, no. 5, p. 2805, Feb. 2024, doi: https://doi.org/10.3390/ijms25052805
[39] M. H. Kung, Y. S. Lin, and T. H. Chang, “Aichi virus 3C protease modulates LC3- and SQSTM1/p62-involved antiviral response,” Theranostics, vol. 10, no. 20, pp. 9200-9213, Jul. 2020, doi: https://doi.org/10.7150/thno.47077
[40] P. L. Xie, M. Y. Zheng, R. Han, W. X. Chen, and J. H. Mao, “Pharmacological mTOR inhibitors in ameliorating Alzheimer’s disease: current review and perspectives,” Frontiers In Pharmacology, vol. 15, p. 1366061, May 2024, doi: https://doi.org/10.3389/fphar.2024.1366061
[41] S. M. Fernandes, J. Mayer, P. Nilsson, and M. Shimozawa, “How close is autophagy-targeting therapy for Alzheimer’s disease to clinical use? A summary of autophagy modulators in clinical studies,” Frontiers In Cell And Developmental Biology, vol. 12, Jan. 2025, doi: https://doi.org/10.3389/fcell.2024.1520949
[42] A. Rahman et al., “Aducanumab for the treatment of Alzheimer’s disease: a systematic review,” Psychogeriatrics, vol. 23, no. 3, pp. 512-522, Feb. 2023, doi: https://doi.org/10.1111/psyg.12944
[43] Z. M. Hein et al., “Autophagy and Alzheimer’s Disease: Mechanisms and Impact Beyond the Brain,” Cells, vol. 14, no. 12, p. 911, Jun. 2025, doi: https://doi.org/10.3390/cells14120911
[44] Y. Hara, N. McKeehan, and H. M. Fillit, “Translating the biology of aging into novel therapeutics for Alzheimer disease,” Neurology, vol. 92, no. 2, pp. 84–93, Jan. 2019, doi: https://doi.org/10.1212/WNL.0000000000006745