Analysis of the application of venom from tropical spider families for different pharmacological therapies

Main Article Content

Eunice Córdoba-Fernández
Gaudy Ariadna Hernández-Chang
Justine Andrea Rojas-Aguilar
David Salazar-Solano
Yanice

Abstract

Tropical spider venom has gained increasing attention in the medical field due to its richness in toxins with therapeutic potential. These substances, which have independently evolved in multiple arthropod lineages, exhibit promising pharmacological properties for the treatment of erectile dysfunction, autoimmune diseases, neurodegenerative disorders, cancer, and chronic pain. The objective of this study was to compile and analyze scientific evidence on the main experimental therapies developed from tropical spider venom. To this end, an extensive literature review was conducted focusing on compounds isolated from representative species such as Phoneutria nigriventer, Pardosa astrigera, Psalmopoeus cambridgei, and Acanthoscurria gomesiana. Among the most relevant findings are the use of the toxin PnTx2-6 from P. nigriventer, associated with erection mechanisms; the antimicrobial and anti-inflammatory peptides from wolf spiders (Lycosidae); the neuroprotective and analgesic action of psalmotoxin-1; and the anticancer potential of gomesin extracted from tarantula hemolymph. Overall, the results suggest that tropical spider venom represents a valuable source of bioactive compounds with medical applications. However, its research requires a regulated and sustainable approach that respects biodiversity and existing regulations.

Article Details

How to Cite
Córdoba-Fernández, E., Hernández-Chang, G. A., Rojas-Aguilar, J. A., Salazar-Solano, D., & Yanice. (2025). Analysis of the application of venom from tropical spider families for different pharmacological therapies. Tecnología En Marcha Journal, 38(4), Pág. 44–53. https://doi.org/10.18845/tm.v38i4.7588
Section
Artículo científico

References

[1] J. P. Gómez-Cardona y C. Gómez-Cabal, “Arañas de importancia clínica-epidemiológica en Colombia,” Biosalud, vol. 18, no. 1, pp. 108-109, 2019.

[2] O. F. Aidoo, J. Osei-Owusu, K. Asante, A. K. Dofuor, B. O. Boateng, S. K. Debrah, K. D. Ninsin, S. A. Siddiqui, y S. Y. Chia, “Insects as food and medicine: a sustainable solution for global health and environmental challenges,” Frontiers in Nutrition, vol. 10, pp. 1-14, 2023. https://doi.org/10.3389/fnut.2023.1113219.

[3] V. Herzig, “Arthropod assassins: Crawling biochemists with diverse toxin pharmacopeias,” Toxicon, vol. 158, pp. 33-37, 2018. https://doi.org/10.1016/j.toxicon.2018.11.312.

[4] T. Lüddecke, V. Herzig, B. M. Von Reumont, y A. Vilcinskas, “The biology and evolution of spider venoms,” Biological Reviews of the Cambridge Philosophical Society, vol. 97, no. 1, pp. 163-178, 2021. https://doi.org/10.1111/brv.12793.

[5] R. Guo, G. Guo, A. Wang, G. Xu, R. Lai, y H. Jin, “Spider-Venom Peptides: Structure, Bioactivity, Strategy, and Research Applications,” Molecules, vol. 29, no. 1, p. 35, 2023. https://doi.org/10.3390/molecules29010035.

[6] P. Escoubas, S. Diochot, y G. Corzo, “Structure and pharmacology of spider venom neurotoxins,” Biochimie, vol. 82, no. 9-10, pp. 893-907, 2000. https://doi.org/10.1016/s0300-9084(00)01166-4.

[7] C. Nunes, N. K. P. Nunes, F. Nunes, T. O. Vieira, A. X. M. Mariano, y M. Elena, “From the PnTx2-6 Toxin to the PnPP-19 Engineered Peptide: Therapeutic Potential in Erectile Dysfunction, Nociception, and Glaucoma,” Frontiers in Molecular Biosciences, vol. 9, p. 831823, 2022. https://doi.org/10.3389/fmolb.2022.831823.

[8] G. F. King, “Venoms as a platform for human drugs: translating toxins into therapeutics,” Expert Opinion on Biological Therapy, vol. 11, no. 11, pp. 1469-1484, 2011. https://doi.org/10.1517/14712598.2011.621940.

[9] A. F. Lacerda, P. B. Pelegrini, D. M. De Oliveira, É. a. R. Vasconcelos, y M. F. Grossi-De-Sá, “Anti-parasitic Peptides from Arthropods and their Application in Drug Therapy,” Frontiers in Microbiology, vol. 7, p. 91, 2016. https://doi.org/10.3389/fmicb.2016.00091.

[10] A. A. Baranova, Y. V. Zakalyukina, A. A. Ovcharenko, V. A. Korshun, y A. P. Tyurin, “Antibiotics from Insect-Associated Actinobacteria,” Biology, vol. 11, no. 11, p. 1676, 2022. https://doi.org/10.3390/biology11111676.

[11] M. V. Micieli, A. Maciá y A. González, “Orden Araneae,” en Entomología médica y veterinaria: Biología y sistemática de artrópodos de interés médico y veterinario en Argentina, 2023, pp. 140–149. [En línea]. Disponible en: https://sedici.unlp.edu.ar/handle/10915/156059

[12] F. F. Fernandes, J. R. Moraes, J. L. D. Santos, T. G. Soares, V. J. P. Gouveia, A. C. Matavel, y M. H. Borges, “Comparative venomic profiles of three spiders of the genus Phoneutria,” Journal of Venomous Animals and Toxins including Tropical Diseases, vol. 28, no. e20210042, pp. 1–14, 2022. https://doi.org/10.1590/1678-9199-JVATITD-2021-0042

[13] M. E. de Lima, S. G. Figueiredo, A. Matavel, K. P. Nunes, C. N. da Silva, F. De Marco Almeida, M. R. V. Diniz, M. N. do Cordeiro, M. Stankiewicz, y P. S. L. Beirão, “Phoneutria nigriventer Venom and Toxins: A Review,” en Spider Venoms, P. Gopalakrishnakone, G. A. Corzo, M. E. de Lima y E. D. García, Eds. Springer, 2016, pp. 71–99. DOI: https://doi.org/10.1007/978-94-007-6389-0_6

[14] G. B. Brock, W. J. G. Hellstrom, A. Giraldi, and S. Honig, “Addressing unmet needs for patients with erectile dysfunction: a narrative review of topical therapies.,” PubMed, vol. 13, no. 2, p. qfaf021, Apr. 2025. [En línea]. Disponible: https://doi.org/10.1093/sexmed/qfaf021

[15] C. Lopera Londoño, J. Vásquez Escobar, D. M. Benjumea Gutiérrez y G. D. Pardo Montaguth, Arañas de Colombia: Biología, envenenamiento y potenciales usos terapéuticos de su veneno. Medellín, Colombia: Universidad de Antioquia, Grupo de Investigación Toxinología, Alternativas Terapéuticas y Alimentarias, 2020. [En línea]. Disponible en: https://bibliotecadigital.udea.edu.co/handle/10495/19232

[16] B. Rivas, E. Sada, R. Hernández-Pando, and V. Tsutsumi, “Péptidos antimicrobianos en la inmunidad innata de enfermedades infecciosas,” Salud Pública de México, vol. 48, no. 1, pp. 62–71, 2006. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0036-36342006000100010&lng=es&tlng=es.

[17] M. K. Shin, I.-W. Hwang, Y. Kim, S. T. Kim, W. Jang, S. Lee, W. Y. Bang, C.-H. Bae, and J.-S. Sung, “Antibacterial and anti-inflammatory effects of novel peptide toxin from the spider Pardosa astrigera,” Antibiotics, vol. 9, no. 7, p. 422, 2020. https://doi.org/10.3390/antibiotics9070422

[18] H. Tan, J. Wang, Y. Song, S. Liu, Z. Lu, H. Luo, and X. Tang, “Análisis del potencial antibacteriano de nuevos péptidos de hélice α en la araña lobo china Lycosa sinensis,” Pharmaceutics, vol. 14, no. 11, p. 2540, 2022. https://doi.org/10.3390/pharmaceutics14112540.

[19] J. H. Oh, J. Park, and Y. Park, “Anti-biofilm and anti-inflammatory effects of Lycosin-II isolated from spiders against multi-drug-resistant bacteria,” Biochimica Et Biophysica Acta (BBA) - Biomembranes, vol. 1864, no. 1, p. 183769, 2021. https://doi.org/10.1016/j.bbamem.2021.183769

[20] S. M. Mumtaz, M. A. Khan, A. Jamal, S. H. Hattiwale, and S. Parvez, “Toxin-derived peptides: An unconventional approach to alleviating cerebral stroke burden and neurobehavioral impairments,” Life Sciences, vol. 351, p. 122777, 2024. https://doi.org/10.1016/j.lfs.2024.122777

[21] A. C. N. Souza, N. S. Binda, H. Y. Almeida, C. J. De Castro Júnior, M. V. Gomez, F. M. Ribeiro, and J. F. Da Silva, “Ion channels-related neuroprotection and analgesia mediated by spider venom peptides,” Current Protein and Peptide Science, vol. 24, no. 5, pp. 365–379, 2023. https://doi.org/10.2174/1389203724666230328133102

[22] M. Mazzuca, C. Heurteaux, A. Alloui, S. Diochot, A. Baron, N. Voilley, N. Blondeau, P. Escoubas, A. Gélot, A. Cupo, A. Zimmer, A. M. Zimmer, A. Eschalier, and M. Lazdunski, “A tarantula peptide against pain via ASIC1a channels and opioid mechanisms,” Nature Neuroscience, vol. 10, no. 8, pp. 943–945, 2007. https://doi.org/10.1038/nn1940

[23] A. Dibas, C. Millar, A. Al-Farra, and T. Yorio, “Neuroprotective Effects of Psalmotoxin-1, an Acid-Sensing Ion Channel (ASIC) Inhibitor, in Ischemia Reperfusion in Mouse Eyes,” Current Eye Research, vol. 43, no. 7, pp. 921–933, 2018. https://doi.org/10.1080/02713683.2018.1454478

[24] B. Cristofori-Armstrong and L. D. Rash, “Acid-sensing ion channel (ASIC) structure and function: Insights from spider, snake and sea anemone venoms,” Neuropharmacology, vol. 127, pp. 173–184, 2017. https://doi.org/10.1016/j.neuropharm.2017.04.042

[25] P. Silva, S. Daffre, y P. Bulet, “Isolation and characterization of gomesin, an 18-residue cysteine-rich defense peptide from the spider Acanthoscurria gomesiana hemocytes with sequence similarities to horseshoe crab antimicrobial peptides of the Tachyplesin family,” The Journal of Biological Chemistry, vol. 275, no. 43, pp. 33464–33470, 2000, doi: 10.1074/jbc.M001491200.

[26] N. J. Saez y V. Herzig, “Versatile spider venom peptides and their medical and agricultural applications,” Toxicon, vol. 158, pp. 109–126, 2018, doi: 10.1016/j.toxicon.2018.11.298.

[27] S. A. Koskela y C. R. Figueiredo, “From antimicrobial to anticancer: the pioneering works of Prof. Luiz Rodolpho Travassos on bioactive peptides,” Brazilian Journal of Microbiology, vol. 54, no. 4, pp. 2561–2570, 2023, doi: 10.1007/s42770-023-01118-8.

[28] J. D. Tanner, E. Deplazes, y R. L. Mancera, “The biological and biophysical properties of the spider peptide gomesin,” Molecules, vol. 23, no. 7, pp. 1733, 2018, doi: 10.3390/molecules23071733.

[29] M. A. Fernandez-Rojo et al., “Gomesin peptides prevent proliferation and lead to the cell death of devil facial tumour disease cells,” Cell Death Discovery, vol. 4, no. 19, pp. 1–10, 2018, doi: 10.1038/s41420-018-0030-0.

[30] R. C. Soletti et al., “Peptide gomesin triggers cell death through L-type channel calcium influx, MAPK/ERK, PKC and PI3K signaling and generation of reactive oxygen species,” Chemico-Biological Interactions, vol. 186, no. 2, pp. 135–143, 2010, doi: 10.1016/j.cbi.2010.04.012.

[31] A. Machado, M. A. Fázio, A. Miranda, S. Daffre, y M. T. Machini, “Synthesis and properties of cyclic gomesin and analogues,” Journal of Peptide Science, vol. 18, no. 9, pp. 588–598, 2012, doi: 10.1002/psc.2439.

[32] S. T. Henriques et al., “Redesigned spider peptide with improved antimicrobial and anticancer properties,” ACS Chemical Biology, vol. 12, no. 9, pp. 2324–2334, 2017, doi: 10.1021/acschembio.7b00459.

[33] L. Y. Chan et al., “Cyclization of the antimicrobial peptide gomesin with native chemical ligation: influences on stability and bioactivity,” ChemBioChem, vol. 14, no. 5, pp. 617–624, 2013, doi: 10.1002/cbic.201300034.

[34] A. H. Benfield et al., “Cyclic gomesin, a stable redesigned spider peptide able to enter cancer cells,” Biochimica et Biophysica Acta (BBA) - Biomembranes, vol. 1863, no. 1, p. 183480, 2020, doi: 10.1016/j.bbamem.2020.183480.

[35] X. Liu, S. T. Henriques, D. J. Craik, y L. Y. Chan, “Unlocking the potential of the antimicrobial peptide gomesin: From discovery and structure–activity relationships to therapeutic applications,” International Journal of Molecular Sciences, vol. 24, no. 6, p. 5893, 2023, doi: 10.3390/ijms24065893.

[36] E. G. Rodrigues et al., “Effective topical treatment of subcutaneous murine B16F10-Nex2 melanoma by the antimicrobial peptide gomesin,” Neoplasia, vol. 10, no. 1, pp. 61–68, 2008, doi: 10.1593/neo.07885.

[37] Asamblea Legislativa de la República de Costa Rica, “Ley de Conservación de la Vida Silvestre, Ley N° 7317,” La Gaceta, N° 109, 8 de junio de 1992.