Slot Antennas with GGW technology for 6G applications at 94GHz

Main Article Content

Jorge Luis Blanco-Orta
María del Carmen Guerra-Martínez
Kenneth Marichal-Leyva
Ariel Calzadilla-Ayuso
Alexander Sánchez-Pompa

Abstract

This article explores the Groove Gap Waveguide (GGW) technology and its application in the 94GHz band through an antenna array. An overview of the Gap Waveguide technology and its variants is given, establishing a theoretical framework for the design and simulation of a 2x2 element slot antenna using CST software. Simulation results show a maximum gain of 12.2dBi and an operating bandwidth of 17.2% in the band of interest. These results suggest that GGW technology has significant potential for applications in next generation sixth generation (6G) wireless communication system scenarios, where high data rates and reliability are required in networks operating in the millimetre wave (mmWave) band.

Article Details

How to Cite
Blanco-Orta, J. L., Guerra-Martínez, M. del C., Marichal-Leyva, K., Calzadilla-Ayuso, A., & Sánchez-Pompa, A. (2025). Slot Antennas with GGW technology for 6G applications at 94GHz. Tecnología En Marcha Journal, 38(3), Pág. 151–161. https://doi.org/10.18845/tm.v38i3.7563
Section
Artículo científico

References

Z. Liwen, F. Qamar, M. Liaqat, M. Nour Hindia and K. Akram Zainol Ariffin, “Toward Efficient 6G IoT Networks: A Perspective on Resource Optimization Strategies, Challenges, and Future Directions,” in IEEE Access, vol. 12, pp. 76606-76633, 2024, doi: 10.1109/ACCESS.2024.3405487.

A. Blika et al., “Federated Learning For Enhanced Cybersecurity And Trustworthiness In 5G and 6G Networks: A Comprehensive Survey,” IEEE Open Journal of the Communications Society, doi: 10.1109/OJCOMS.2024.3449563.

M. Rabbanifard, D. Zarifi, A. Farahbakhsh and M. Mrozowski, “Design of Compact and Wideband Groove Gap Waveguide-Based Directional Couplers,” IEEE Access, vol. 12, pp. 86346-86354, 2024, doi: 10.1109/ACCESS.2024.3416290.

A. Kalantari Khandani, A. Farahbakhsh, D. Zarifi and A. Uz Zaman, “Millimeter Wave Wideband and Low-Loss Compact Power Divider Based on Gap Waveguide: For Use in Wideband Antenna Array System,” in IEEE Access, vol. 12, pp. 116478-116488, 2024, doi: 10.1109/ACCESS.2024.3441316.

Z. A. Masri, A. Jabri, Y. Tawk and J. Costantine, “A Groove Gap Waveguide Feeding Network for Dual-Circularly Polarized Antenna Arrays,” in IEEE Journal of Microwaves, vol. 4, no. 3, pp. 512-520, July 2024, doi: 10.1109/JMW.2024.3404832.

D. Santiago, M. Fang, A. U. Zaman, M. A. G. Laso, T. Lopetegi and I. Arregui, “W-Band Filtering Antenna Based on a Slot Array and Stacked Coupled Resonators Using Gap Waveguide Technology,” in IEEE Antennas and Wireless Propagation Letters, vol. 23, no. 8, pp. 2546-2550, Aug. 2024, doi: 10.1109/LAWP.2024.3399269.

P. Petroutsos and S. Koulouridis, “A Metallo-Dielectric Groove Gap Waveguide Slotted Array Antenna With Hybrid Glide-Symmetric Holes & “Mushroom”-Type Metasurfaces,” in IEEE Open Journal of Antennas and Propagation, doi: 10.1109/OJAP.2024.3466472.

A. Morales-Hernández, M. Á. Sánchez-Soriano, M. Ferrando-Rocher, S. Marini and V. E. Boria, “In-Depth Study of the Corona Discharge Breakdown Thresholds in Groove Gap Waveguides and Enhancement Strategies for Inductive Bandpass Filters,” in IEEE Access, vol. 10, pp. 129149-129162, 2022, doi: 10.1109/ACCESS.2022.3228111.

A. Karami Horestani, Z. Shaterian and M. Mrozowski, “Low-Loss Mechanically Tunable Resonator and Phase Shifters in Groove Gap Waveguide Technology,” in IEEE Access, vol. 10, pp. 70964-70970, 2022, doi: 10.1109/ACCESS.2022.3186988.

D. Santiago, M. A. G. Laso, T. Lopetegi and I. Arregui, “Novel Design Method for Millimeter-Wave Gap Waveguide Low-Pass Filters Using Advanced Manufacturing Techniques,” in IEEE Access, vol. 11, pp. 89711-89719, 2023, doi: 10.1109/ACCESS.2023.3305956.

A. Morales-Hernández, M. Á. Sánchez-Soriano, M. Ferrando-Rocher, S. Marini and V. E. Boria, “In-Depth Study of the Corona Discharge Breakdown Thresholds in Groove Gap Waveguides and Enhancement Strategies for Inductive Bandpass Filters,” in IEEE Access, vol. 10, pp. 129149-129162, 2022, doi: 10.1109/ACCESS.2022.3228111.

M. Ferrando-Rocher, J. I. Herranz-Herruzo, A. Valero-Nogueira and B. Bernardo-Clemente, “Single-Layer Sequential Rotation Network in Gap Waveguide for a Wideband Low-Profile Circularly Polarized Array Antenna,” in IEEE Access, vol. 10, pp. 62157-62163, 2022, doi: 10.1109/ACCESS.2022.3182336.

A. H. Haghparast and P. Rezaei, “Miniaturized, broadband, circular polarized horn antenna with Groove gap waveguide technology,” in Radio Science, vol. 59, no. 8, pp. 1-10, Aug. 2024, doi: 10.1029/2024RS007965.

X. Cheng et al., “W-Band Binary Phase-Controlled Multibeam Antenna Array Based on Gap Waveguide Magic-Tee,” in IEEE Transactions on Antennas and Propagation, vol. 70, no. 9, pp. 7565-7577, Sept. 2022, doi: 10.1109/TAP.2022.3162031.

J. Yue, C. Zhou, K. Xiao, L. Ding and S. Chai, “W-Band Low-Sidelobe Series-Fed Slot Array Antenna Based on Groove Gap Waveguide,” in IEEE Antennas and Wireless Propagation Letters, vol. 22, no. 4, pp. 908-912, April 2023, doi: 10.1109/LAWP.2022.3228115.