Uncertainty estimation for a speech recognition system
Main Article Content
Abstract
Whisper is a voice recognition system designed by the company OpenAI, which has been
trained with 680,000 hours of multilingual and multitask supervised data collected from the web.
The following research aims to adapt and employ the Monte Carlo Dropout using audio data
labeled in Spanish and contaminated with a certain amount of noise and Levensthein distance
to estimate the score uncertainty of this system.Preliminary results show that there is a linear
relationship between uncertainty estimation and the Word Error Rate (WER) of the transcriptions.
Furthermore, it is observed that the number of insertions or omissions in the transcriptions tends
to be low.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación y pueda editarlo, reproducirlo, distribuirlo, exhibirlo y comunicarlo en el país y en el extranjero mediante medios impresos y electrónicos. Asimismo, asumen el compromiso sobre cualquier litigio o reclamación relacionada con derechos de propiedad intelectual, exonerando de responsabilidad a la Editorial Tecnológica de Costa Rica. Además, se establece que los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
References
Díaz, C., Calderon-Ramirez, S., y Aguilar, L. D. M. (2022). Data quality metrics for unlabelled datasets. En 2022
ieee 4th international conference on bioinspired.
Radford, A., Kim, J. W., Xu, T., Brockman, G., McLeavey, C., y Sutskever, I. (2022). Robust speech recognition
via large-scale weak supervision. arXiv preprint arXiv:2212.04356 .
Mena, J., Pujol, O., y Vitria, J. (2021). A survey on uncertainty estimation in deep learning classification systems
from a bayesian perspective. ACM Computing Surveys.
Loquercio, A., Segu, M., y Scaramuzza, D. (2020). A general framework for uncertainty estimation in deep
learning. IEEE Robotics and Automation Letters, 5 (2), 3153–3160.
Gal, Y., y Ghahramani, Z. (2016). Dropout as a bayesian approximation: Representing model uncertainty in
deep learning. En international conference on machine learning (pp. 1050–1059)
Jayashankar, T., Roux, J. L., y Moulin, P. (2020). Detecting audio attacks on asr systems with dropout uncertainty. arXiv preprint arXiv:2006.019