Tracking the trajectory of a swarm of mobile robots with a computer vision system
Main Article Content
Abstract
Swarm robotics research uses a range of tools for evaluating the behaviors and metrics of robot
collectives. One crucial tool involves the capability to track each robot’s position and orientation
at various intervals, enabling the reconstruction of individual robot poses and trajectories.
Comprehensive analysis of swarm behavior hinges on the study of the collective trajectories of
each robot within the group. This paper demonstrates the implementation of a computer vision
system, utilizing a webcam and Python scripts, to effectively track a mobile robot group within
a swarm. This shows the feasibility of developing such research tools using commonplace
computing equipment. The design and development of the vision system, including a detailed
calibration procedure, robot identification methods, and practical examples, are also shown.
Furthermore, it offers an exhaustive explanation of the robot tracking process. Experimental trials
with three robots validate the system’s ability to extract images from video feeds and accurately
identify each robot. Subsequently, after image processing, the system generates a dataset
encompassing image numbers, robot IDs, x and y positions, and orientations.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación y pueda editarlo, reproducirlo, distribuirlo, exhibirlo y comunicarlo en el país y en el extranjero mediante medios impresos y electrónicos. Asimismo, asumen el compromiso sobre cualquier litigio o reclamación relacionada con derechos de propiedad intelectual, exonerando de responsabilidad a la Editorial Tecnológica de Costa Rica. Además, se establece que los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
References
M. Dorigo, G. Theraulaz, and V. Trianni, “Swarm robotics: Past, present, and future [point of view],” Proceedings
of the IEEE, vol. 109, no. 7, pp. 1152–1165, 2021.
J. C. Brenes-Torres, “jcbrenes/proe: Proyecto proe: Implementación de un prototipo de enjambre de robots
para la digitalización de escenarios estáticos y planificación de rutas óptimas.”
https://github.com/jcbrenes/PROE, 2021
C. Calderón-Arce and R. Solís-Ortega, “Swarm robotics and rapidly exploring random graph algorithms
applied to environment exploration and path planning,” International Journal of Advanced Computer Science
and Applications, vol. 10, no. 5, 2019.
R. Solis-Ortega and C. Calderon-Arce, “Multiobjective problem to find paths through swarm robotics,” in
Proceedings of the 2019 3rd International Conference on Automation, Control and Robots, 2019, pp. 12–21.
J. C. Brenes-Torres, F. Blanes, and J. Simo, “Magnetic trails: A novel artificial pheromone for swarm robotics
in outdoor environments,” Computation, vol. 10, no. 6, p. 98, 2022.
Intel, Open-Source Computer Vision Library. Reference Manual, 2001.
W. Qi, F. Li, and L. Zhenzhong, “Review on camera calibration,” in 2010 Chinese Control and Decision
Conference, 2010, pp. 3354–3358.
Z. Zhang, “A flexible new technique for camera calibration,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 22, no. 11, pp. 1330–1334, 2000.