Instrumental test of patch antennas manufactured for C-Band applications
Main Article Content
Abstract
In free space, the calculated wavelength of a 5,2 GHz signal is 57,7 mm, this gives us an idea of the volume required to be occupied by a patch type antenna intended for C-band applications and some of the limitations of relying on a traditional manufacturing process. Considering the interest of competing in the current technological market, it is important to obtain experimental results of the performance of the product that can be obtained with the suggested minimum of resources. Patch antenna prototypes require experimental verifications regardless of the manufacturing process that was carried out, so this work presents a clear methodology that includes calculations, design parameters such as characteristic impedance, acid-based manufacturing, experimental setup with a signal generator and a spectrum analyzer, tests with their respective measurements considering quantitative and qualitative approaches, compatibility with commercial C-band equipment and evaluation of results, providing an experimental comparison of different prototypes of designs based on simple patch antennas and array antennas.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación y pueda editarlo, reproducirlo, distribuirlo, exhibirlo y comunicarlo en el país y en el extranjero mediante medios impresos y electrónicos. Asimismo, asumen el compromiso sobre cualquier litigio o reclamación relacionada con derechos de propiedad intelectual, exonerando de responsabilidad a la Editorial Tecnológica de Costa Rica. Además, se establece que los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
References
G. Kim y S. Kim, «Design and Analysis of Dual Polarized Broadband Microstrip Patch Antenna for 5G
mmWave Antenna Module on FR4 Substrate,» IEEE Access, vol. IX, pp. 64306-64316, 2021, doi: 10.1109/
ACCESS.2021.3075495.
C. A. Balanis, Antenna Theory: Analysis and Design, Fourth ed., New Jersey: John Wiley & Sons, Inc., 2016,
pp. 783-867.
R. Garg, P. Bhartia, I. Bahl y A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House, 2000, pp. 265-
, 771-772.
T. A. Milligan, Modern antenna design, 2nd ed., John Wuley & Sons, Inc., 2005, pp. 327-330.
V. L. Pham, S. X. Ta, K. K. Nguyen, C. Dao-Ngoc y N. Nguyen-Trong, «Single-Layer, Dual-Band, Circularly
Polarized, Proximity-Fed Meshed Patch Antenna,» IEEE Access, vol. 10, pp. 94560-94567, 2022, doi: 10.1109/
ACCESS.2022.3204685.
X. Chen, Y. Wei, Y. Li, Z. Liang, S. Y. Zheng y Y. Long, «A Gain-Enhanced Patch Antenna With a Periodic
Microstrip Rampart Line,» IEEE Open Journal of Antennas and Propagation, vol. 3, pp. 83-88, 2022, doi:
1109/OJAP.2021.3135124.
L. Wang, K. L. Chung, W. Zong y B. Feng, «A Highly Sensitive Microwave Patch Sensor for Multidirectional
Strain Sensing Based on Near Orthogonal Modes,» IEEE Access, vol. 9, pp. 24669-24681, 2021, doi: 10.1109/
ACCESS.2021.3056132.
H. Nakano, T. Abe y J. Yamauchi, «Realization of Deep Tilt Angle, High Aperture Efficiency, and Low Sidelobe
Using a Single Metaplate and a Patch Antenna,» IEEE Access, vol. 10, pp. 24-33, 2022, doi: 10.1109/
ACCESS.2021.3137890.