Distribution Power Grids Modeling using ETAP

Main Article Content

Rebeca Solis-Ortega
Gustavo A. Gómez-Ramírez
Dario Brenes-Fallas
José Pablo Morales-Hern´andez
Marlon Umaña-Mondragón

Abstract

This paper introduces a methodology for evaluating the modeling and simulation of electrical distribution networks amidst significant integration of distributed generation. The Electrical Transient Analyzer Program (ETAP®) was utilized to model and simulate a medium voltage distribution network in Costa Rica, incorporating criteria for determining accommodation capacity based on voltage, overload, and current considerations. Our findings demonstrate the effectiveness of this approach in identifying and assessing critical points within the system, thereby eliminating the need for additional mathematical techniques. We underscore the importance of maintaining updated databases to ensure the reliability and validity of results. In conclusion, the simulation tool utilized exhibits the necessary capacity to analyze the integration of distributed generation, providing clear insights for strategic decision-making within the electricity sector.

Article Details

How to Cite
Solis-Ortega, R., Gómez-Ramírez, G. A., Brenes-Fallas, D., Morales-Hern´andez, J. P., & Umaña-Mondragón, M. (2025). Distribution Power Grids Modeling using ETAP. Tecnología En Marcha Journal, 38(2), Pág. 48–62. https://doi.org/10.18845/tm.v38i2.7104
Section
Artículo científico
Author Biography

Rebeca Solis-Ortega, Instituto Tecnológico de Costa Rica

In 1987, Rebeca Solis-Ortega was born in Costa Rica. The Technological Institute of Costa Rica (ITCR) granted her a Bachelor's degree in Computer Science with an emphasis in Computer Science in 2009 and 2011, respectively, in addition to a Bachelor's degree in Computer-Assisted Mathematics Teaching. 2016 edition of Computing by the Technological Institute of Costa Rica (ITCR). Presently a researcher, extensionist, and professor at the School of Mathematics of the Technological Institute of Costa Rica, where she has been an instructor since 2015.

References

G. A. Gómez-Ramírez, C. Meza, G. Mora-Jiménez, J. R. R. Morales, and L. García-Santander, “The Central American Power System: Achievements, Challenges, and Opportunities for a Green Transition,” Energies (Basel), vol. 16, no. 11, Jun. 2023, doi: 10.3390/en16114328.

G. A. Gómez-Ramírez, R. Solis-Ortega, and L. A. Ross-Lépiz, “Impact of electric vechicles on power transmission grids,” Heliyon, vol. 9, no. 11, Nov. 2023, doi: 10.1016/j.heliyon.2023.e22253.

M. Z. Ul Abideen, O. Ellabban, and L. Al-Fagih, “A review of the tools and methods for distribution networks’ hosting capacity calculation,” Energies, vol. 13, no. 11. MDPI AG, Jun. 01, 2020. doi: 10.3390/en13112758.

O. J. Ayamolowo, P. Manditereza, and K. Kusakana, “Combined Generation and Transmission Expansion Planning Model for Improved Modern Power System Resilience,” Electric Power Components and Systems, vol. 51, no. 9, pp. 898–914, 2023, doi: 10.1080/15325008.2023.2185836.

G. A. Gómez-Ramírez, G. Mora-Jiménez, and C. Meza, “Simulación del sistema de interconexión eléctrica de los países de América Central usando ETAP,” Revista Tecnología en Marcha, Mar. 2023, doi: 10.18845/tm.v36i2.6007.

L. Mehigan, J. P. Deane, B. P. Ó. Gallachóir, and V. Bertsch, “A review of the role of distributed generation (DG) in future electricity systems,” Energy, vol. 163. Elsevier Ltd, pp. 822–836, Nov. 15, 2018. doi: 10.1016/j.energy.2018.08.022.

S. M. Ismael, S. H. E. Abdel Aleem, A. Y. Abdelaziz, and A. F. Zobaa, “State-of-the-art of hosting capacity in modern power systems with distributed generation,” Renewable Energy, vol. 130. Elsevier Ltd, pp. 1002–1020, Jan. 01, 2019. doi: 10.1016/j.renene.2018.07.008.

S. Fatima, V. Püvi, and M. Lehtonen, “Review on the PV hosting capacity in distribution networks,” Energies, vol. 13, no. 18. MDPI AG, Sep. 01, 2020. doi: 10.3390/en13184756.

E. Mulenga, M. H. J. Bollen, and N. Etherden, “A review of hosting capacity quantification methods for photovoltaics in low-voltage distribution grids,” International Journal of Electrical Power and Energy Systems, vol. 115. Elsevier Ltd, Feb. 01, 2020. doi: 10.1016/j.ijepes.2019.105445.

C. D. Iweh, S. Gyamfi, E. Tanyi, and E. Effah-Donyina, “Distributed generation and renewable energy integration into the grid: Prerequisites, push factors, practical options, issues and merits,” Energies (Basel), vol. 14, no. 17, Sep. 2021, doi: 10.3390/en14175375.

J. Qiu, Z. Xu, Y. Zheng, D. Wang, and Z. Y. Dong, “Distributed generation and energy storage system planning for a distribution system operator,” IET Renewable Power Generation, vol. 12, no. 12, pp. 1345–1353, Sep. 2018, doi: 10.1049/iet-rpg.2018.5115.

F. Ding and B. Mather, “On Distributed PV Hosting Capacity Estimation, Sensitivity Study, and Improvement,” IEEE Trans Sustain Energy, vol. 8, no. 3, pp. 1010–1020, Jul. 2017, doi: 10.1109/TSTE.2016.2640239.

K. Janiga, “A Review Of Voltage Control Strategies For Low-Voltage Networks With High Penetration Of Distributed Generation,” Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Srodowiska, vol. 10, no. 3, pp. 60–65, 2020, doi: 10.35784/iapgos.1928.

A. Sheikhi, A. Maani, F. Safe, and A. M. Ranjbar, “Distributed generation penetration impact on distribution networks loss,” Renewable Energy and Power Quality Journal, vol. 1, no. 11, pp. 730–735, Mar. 2013, doi: 10.24084/repqj11.431.

Q. Lu, J. Chen, Y. Zhu, S. Liu, Y. Xu, and K. Wang, “Risk Assessment with High Distributed Generations Penetration Considering the Interaction of Transmission and Distribution Grids; Risk Assessment with High Distributed Generations Penetration Considering the Interaction of Transmission and Distribution Grids,” 2018.

Brenes-Fallas, Edgar Darío. “Modelado y simulación de una red de distribución en media tensión de Cartago para JASEC, de acuerdo con el cumplimiento de la Ley 10086”. 2023.

Morales-Hernández, José Pablo. “Estudio técnico financiero de los resultados de integrar generación distribuida a la red eléctrica de JASEC mediante modelado y simulación en ETAP”. 2023.

Umaña-Mondragón, Marlon. “Evaluación del comportamiento de la red eléctrica de Coopesantos RL mediante el análisis de la penetración de recursos distribuidos de generación solar, en sistemas de potencia conforme a la Ley 10086”. 2023.

De Novoa, Laura Martinez. “Optimal solar PV, battery storage, and smart-inverter allocation in zero-net-energy microgrids considering the existing power system infrastructure”. University of California, Irvine, 2020.

Asamblea Legislativa de la República de Costa Rica. (2021, 8 de diciembre). Ley 10086: Promoción y regulación de recursos energéticos distribuidos a partir de fuentes renovables. La Gaceta. Disponible en https://www.pgrweb.go.cr/scij/Busqueda/Normativa/Normas/nrm_texto_completo.aspx?param1=NRTC&nValor1=1&nValor2=96064

Costa Rica. Poder Ejecutivo. (2015, 14 de septiembre). Decreto Ejecutivo N° 39220: Reglamento a la Ley N° 9478, Ley de Generación Distribuida para Autoconsumo con Fuentes Renovables. La Gaceta. Disponible en https://www.pgrweb.go.cr/scij/Busqueda/Normativa/Normas/nrm_texto_completo.aspx?param1=NRTC&nValor1=1&nValor2=85514

Autoridad Reguladora de los Servicios Públicos de Costa Rica (marzo 2023), ARESEP, https://aresep.go.cr/electricidad/metodologias/