Demand behavior evaluation in modeling distribution networks
Main Article Content
Abstract
Electric utilities aim to establish dependable electrical transmission and distribution infrastructure to fulfill the energy requirements of users. The availability of a strong electrical infrastructure can frequently enhance grid flexibility, resilience, and security. Inadequate planning often leads to insufficient investment in essential electrical projects, resulting in their potential postponement and compromising the system’s reliability. In order to effectively manage the power system, it is essential to possess data pertaining to generation, demand respond, and all other relevant factors required for proper planning. This article will simulate and evaluate demand response modeling using data obtained from smart meters and distribution network measurements. We utilized the Electrical Transient Analyzer Program (ETAP®) to simulate a residential distribution network consisting of 634 residential loads. The objective was to evaluate the impact of these loads on the operation of the distribution network. The simulation results indicate that utilizing smart meter data or distribution circuit measurements can lead to differences of up to 13.06% in demand responsiveness. Moreover, in both scenarios, distinct voltage profiles might be attained, which can potentially undermine the decision-making process in the planning of electrical networks.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación y pueda editarlo, reproducirlo, distribuirlo, exhibirlo y comunicarlo en el país y en el extranjero mediante medios impresos y electrónicos. Asimismo, asumen el compromiso sobre cualquier litigio o reclamación relacionada con derechos de propiedad intelectual, exonerando de responsabilidad a la Editorial Tecnológica de Costa Rica. Además, se establece que los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
References
F. Ding y B. Mather, «On Distributed PV Hosting Capacity Estimation, Sensitivity Study, and Improvement», IEEE Trans Sustain Energy, vol. 8, n.o 3, pp. 1010-1020, jul. 2017, doi: 10.1109/TSTE.2016.2640239.
S. Impram, S. Varbak Nese, y B. Oral, «Challenges of renewable energy penetration on power system flexibility: A survey», Energy Strategy Reviews, vol. 31. Elsevier Ltd, 1 de septiembre de 2020. doi: 10.1016/j.esr.2020.100539.
A. Sheikhi, A. Maani, F. Safe, y A. M. Ranjbar, «Distributed generation penetration impact on distribution networks loss», Renewable Energy and Power Quality Journal, vol. 1, n.o 11, pp. 730-735, mar. 2013, doi: 10.24084/repqj11.431.
Q. Lu, J. Chen, Y. Zhu, S. Liu, Y. Xu, y K. Wang, «Risk Assessment with High Distributed Generations Penetration Considering the Interaction of Transmission and Distribution Grids; Risk Assessment with High Distributed Generations Penetration Considering the Interaction of Transmission and Distribution Grids», 2018.
N. E. Matute, S. P. Torres, y C. A. Castro, «Transmission Expansion Planning Considering the Impact of Distributed Generation», en Proceedings of 2019 IEEE PES Innovative Smart Grid Technologies Europe, ISGT-Europe 2019, Institute of Electrical and Electronics Engineers Inc., sep. 2019. doi: 10.1109/ISGTEurope.2019.8905460.
M. I. Alizadeh, M. Parsa Moghaddam, N. Amjady, P. Siano, y M. K. Sheikh-El-Eslami, «Flexibility in future power systems with high renewable penetration: A review», Renewable and Sustainable Energy Reviews, vol. 57. Elsevier Ltd, pp. 1186-1193, 1 de mayo de 2016. doi: 10.1016/j.rser.2015.12.200.
M. Panda y Y. K. Nayak, «Impact analysis of renewable energy Distributed Generation in deregulated electricity markets: A Context of Transmission Congestion Problem», Energy, vol. 254, sep. 2022, doi: 10.1016/j.energy.2022.124403.
G. A. Gómez-Ramírez, C. Meza, G. Mora-Jiménez, J. R. R. Morales, y L. García-Santander, «The Central American Power System: Achievements, Challenges, and Opportunities for a Green Transition», Energies (Basel), vol. 16, n.o 11, jun. 2023, doi: 10.3390/en16114328.
S. M. Ismael, S. H. E. Abdel Aleem, A. Y. Abdelaziz, y A. F. Zobaa, «State-of-the-art of hosting capacity in modern power systems with distributed generation», Renewable Energy, vol. 130. Elsevier Ltd, pp. 1002-1020, 1 de enero de 2019. doi: 10.1016/j.renene.2018.07.008.
E. Mulenga, M. H. J. Bollen, y N. Etherden, «A review of hosting capacity quantification methods for photovoltaics in low-voltage distribution grids», International Journal of Electrical Power and Energy Systems, vol. 115. Elsevier Ltd, 1 de febrero de 2020. doi: 10.1016/j.ijepes.2019.105445.
L. Mehigan, J. P. Deane, B. P. Ó. Gallachóir, y V. Bertsch, «A review of the role of distributed generation (DG) in future electricity systems», Energy, vol. 163. Elsevier Ltd, pp. 822-836, 15 de noviembre de 2018. doi: 10.1016/j.energy.2018.08.022.
G. A. Gomez-Ramirez, I. A. Luevano-Reyes, G. Mora-Jimenez, L. Garcia-Santander, M. Z. Laskano, y C. Meza, «Increasing Distribution Network Capacity through Storage in Central American Countries: A Case Study», en 2022 IEEE International Conference on Automation/25th Congress of the Chilean Association of Automatic Control: For the Development of Sustainable Agricultural Systems, ICA-ACCA 2022, Institute of Electrical and Electronics Engineers Inc., 2022. doi: 10.1109/ICA-ACCA56767.2022.10006043.
S. Fatima, V. Püvi, y M. Lehtonen, «Review on the PV hosting capacity in distribution networks», Energies, vol. 13, n.o 18. MDPI AG, 1 de septiembre de 2020. doi: 10.3390/en13184756.
G. A. Gomez-Ramirez y R. Solis-Ortega, «Electric Vehicle Penetration Modelling for Costa Rica Power System», en 2021 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies, CHILECON 2021, Institute of Electrical and Electronics Engineers Inc., 2021. doi: 10.1109/CHILECON54041.2021.9703070.
G. A. Gómez-Ramírez, R. Solis-Ortega, y L. A. Ross-Lépiz, «Impact of electric vehicles on power transmission grids», Heliyon, vol. 9, n.o 11, nov. 2023, doi: 10.1016/j.heliyon.2023.e22253.
G. A. Gómez-Ramírez, G. Mora-Jiménez, y C. Meza, «Simulación del sistema de interconexión eléctrica de los países de América Central usando ETAP», Revista Tecnología en Marcha, mar. 2023, doi: 10.18845/tm.v36i2.6007.
M. Z. Ul Abideen, O. Ellabban, y L. Al-Fagih, «A review of the tools and methods for distribution networks’ hosting capacity calculation», Energies, vol. 13, n.o 11. MDPI AG, 1 de junio de 2020. doi: 10.3390/en13112758.
O. M. Babatunde, J. L. Munda, y Y. Hamam, «Power system flexibility: A review», en Energy Reports, Elsevier Ltd, feb. 2020, pp. 101-106. doi: 10.1016/j.egyr.2019.11.048.
B. Mohandes, M. S. El Moursi, N. Hatziargyriou, y S. El Khatib, «A Review of Power System Flexibility with High Penetration of Renewables», IEEE Transactions on Power Systems, vol. 34, n.o 4, pp. 3140-3155, jul. 2019, doi: 10.1109/TPWRS.2019.2897727.
A. Akrami, M. Doostizadeh, y F. Aminifar, «Power system flexibility: an overview of emergence to evolution», Journal of Modern Power Systems and Clean Energy, vol. 7, n.o 5. Springer Heidelberg, pp. 987-1007, 1 de septiembre de 2019. doi: 10.1007/s40565-019-0527-4.