Numerical simulation with MATLAB and Probit models to calculate the consequences due to lung damage from boiler explosions

Main Article Content

Ricardo Alberto Morales-Vargas

Abstract

Boiler explosions around the world cause serious damage to work facilities as well as injuries to operators, which can range from burns and lacerations to death, with high economic costs for user companies. In industrial and institutional environments, the main cause of boiler explosions is low water level, which causes boiler tube overheating, sudden vaporization, pressure rise, and catastrophic failure. Despite these risks, there are few computational tools to calculate their consequences. Preventing this type of accident is essential in industry and commerce, as well as the service sectors since these must be intrinsically safe to fulfill their economic and humanitarian mission, respectively. This article reviews the technical requirements for safe operation of boilers focusing on correct location and distancing from the boiler room to minimize the domino effect and human injuries. The author developed a script and compiled code in the MATLAB® environment to calculate the resulting maximum overpressure as a function of distance, with user-entered parameters for a variety of boilers and explosion conditions. Shock wave damage was estimated using Probit calculations considering lung damage, to facilitate analysis and recommend the ideal or improved location of the boiler room or compartment. It is concluded that regulations must include a mandatory analysis of consequences, using similar or more elaborate numerical models, to guide the distribution of plants and protect workers and neighbors from explosion overpressure effects.

Article Details

How to Cite
Morales-Vargas, R. A. (2024). Numerical simulation with MATLAB and Probit models to calculate the consequences due to lung damage from boiler explosions. Tecnología En Marcha Journal, 38(1), Pág. 44–58. https://doi.org/10.18845/tm.v38i1.7022
Section
Artículo científico

References

Shrivastava R, Patel P. Hazards Identification and Risk Assessment in Thermal Power Plant, International Journal of Engineering Research and Technology. 2014; 3(4): 17-37.

Ibrahim MF, El-Arabaty HA, Moharran I. Effect of steam boiler explosion on boiler room and adjacent building’s structure. International Journal of Engineering Science and Invention. 2019; Vol. 8, No. 02, Series II: 17-37.

Fang Q, Zhe Z, Qingmin S. Application of Phast in the Quantitative Consequence Analysis for the Boiler BLEVE. En: ISDEA '13: Proceedings of the 2013 Third International Conference on Intelligent System Design and Engineering Applications; 2013. pp. 369-372 https://doi.org/10.1109/ISDEA.2012.92

Morales-Vargas RA. Simulación numérica de explosiones en calderas: Pautas para la distribución de planta como medida de mitigación de daños. Rev. salud ambient. 2020; 20(2):137-149.

Global Asset Protection Services LLC, Oil and Chemical Plant Layout and Spacing, GAPS Guidelines, GAP 2.5.2, 2015.

Real Decreto 809/2021, de 21 de septiembre, por el que se aprueba el Reglamento de equipos a presión y sus instrucciones técnicas complementarias. https://www.boe.es/boe/dias/2021/10/11/pdfs/BOE-A-2021-16407.pdf

Creus A. Fiabilidad y Seguridad: Su aplicación en procesos industriales. Marcombo. Barcelona, 1992

Scientific American, "Cause of Boiler Explosions" Scientific American 3, 25new, 386 (December 1860) doi:10.1038/scientificamerican12151860-386: https://www.scientificamerican.com/article/cause-of-boiler-explosions/ [consultado:Julio 6, 2022, 3:00 pm].

National Board of Boiler and Pressure Vessel Inspectors, 2002 Incident Report, Bulletin. 2003; 58(2): 2-3

National Board of Boiler and Pressure Vessel Inspectors, 2002 Boiler accidents report: To err is human, Bulletin, 2002; Vol. 57, No. 2. https://www.achrnews.com/articles/87615-boiler-accident-reports-to-err-is-human. [consultado:Julio 6, 2022, 3:00 pm].

American Society of Power Engineers. Your Boiler Room a Time Bomb?: https://asope.org/sites/default/files/Documents/Your_Boiler_Room-A%20_Time_Bomb-2.pdf [Consultado: Julio 6, 2022, 3:10 pm].

State of Tennessee (USA), 2007. Department of Labor and Workforce Development, Division of Boiler And Elevator Inspection. Boiler Accident Dana Corporation, Paris Extrusion Plant. https://www.ipe.org/docs/default-source/ontario-pdfs/incidents/ftsm-boiler-accident-with-pictures.pdf?sfvrsn=16821ed1_2 [Consultado: Julio 7, 2022, 3:16 pm].

Editorial. Combustión, Energía y Ambiente. Relación de accidentes en el primer semestre, Calderas. Guía del Usuario en la Industria y el Comercio. CEACA, 2020 1(1), 6-8.

El Universo, Sube a 3 la cifra de muertos por explosión en empresa atunera de Manta, (August 7th, 2020). Ecuador. https://www.eluniverso.com/noticias/2020/08/07/nota/7933896/explosion-empresa-atunera-manta-muertos/ (Consultado: Julio 5, 2022, 9:41 pm)

Guimarães Landi R, Bandineli Montedo U, Netto Lahoz C,Using systems theory for additional risk detection in boiler explosions in Brazil, Safety Science, Volume 152, 2022,105761,ISSN 0925-7535.https://doi.org/10.1016/j.ssci.2022.105761.

Cozzani V, Salzano B. The quantitative assessment of domino effects caused by overpressure Part I. Probit models, Journal of Hazardous Materials. 2004; A 107, 67-80.

González-Ferradás E, Díaz-Alonso F, Sánchez-Pérez JF, Doval Miñarro M, Miñana-Aznar A, Ruiz-Gimeno J, Martínez-Alonso J. Consequence Analysis to Buildings from Bursting Cylindrical Vessels. Process Safety Progress, 2009; Vol. 28(2): 179-189.

Lees FP. Loss Prevention in the Process Industries, Vol. 1, London and Boston: Butterworths. 1980.

Casal J, Arnaldos J, Montiel H, Planas-Cuchi E, Vílchez JA. Modeling and Understanding BLEVEs (Chapter 22). In Handbook of Hazardous Materials Spills Technology: 22.1-22.27. http://aevnmont.free.fr/SACH-BOOKS/Petrochemistry/Handbook%20of%20Hazardous%20Materials%20Spills%20Technology/Part%20V.%20Spill%20Modeling/22.%20Modeling%20and%20Understanding%20BLEVEs.pdf [Consultado: Julio 6, 2022, 3:19 pm].

Birk AM, Davison C, Cunningham M. Blast overpressures from medium scale BLEVE tests. Journal of Loss Prevention in the Process Industries. 2007; 20: 194-206.

Díaz-Alonso F, González-Ferradás E, Sánchez-Pérez JF, Miñana- Aznar A, Ruiz-Gimeno J, Martínez-Alonso J. Characteristic overpressure-impulse-distance curves for the detonation of explosives, pyrotechnics or unstable substances. J Loss Prev Process Ind 2006; 19, 724-728.

Van de Berg AC, Lannoy A. 1993. Methods for Vapor Cloud Explosion Blast Modelling. J. Hazard Mater 1993; 34, 151-171.

González-Ferradás E, Díaz-Alonso F, Sánchez-Pérez JF, Miñana- Aznar A, Ruiz-Gimeno J, Martínez-Alonso J. Characteristic overpressure-impulse-distance curves for Vessel Burst. Process. Saf. Prog (AICHE) 2006; Vol, 25(3): 250-254.

Casal J, Montiel H, Planas-Cuchi E, Vílchez JA. “BLEVE-bola de fuego” (Chapter 6). In: Análisis del riesgo en instalaciones industriales, Bogotá: Editorial Alfaomega; 2001. pp. 173-205.

Instituto Nacional de Seguridad e Higiene del Trabajo (Ministerio de Trabajo y Asuntos Sociales de España, NTP 291: Modelos de vulnerabilidad de las personas por accidentes mayores: método Probit. https://www.cso.go.cr/legislacion/notas_tecnicas_preventivas_insht/NTP%20291%20-%20Modelos%20de%20vulnerabilidad%20de%20las%20personas%20por%20accidentes%20mayores%20metodo%20Probit.pdf. [Consultado: Julio 5, 2022, 3:22 pm].

Zaghloul A, Ranaweera P, Mohotti D. Assessment of Blast Effects on Passengers in Underground Trains. En: 25th Australian Conference on Mechanics of Structures and Materials (ACMSM25) Brisbane, Australia; 2018.

Kakogiannis D, Van Hemlrijck D, Wastiels J, Palanivelu S, Van Paepegem W, Vantomme J, Kotzakolios T, Kostopoulos V. Assessment of pressure waves generated by explosive loading. (preprint). Computer Modeling in Engineering and Sciences. 2010; 65(1): 1-15. https://www.researchgate.net/publication/228813743_Assessment_of_Pressure_Waves_Generated_by_Explosive_Loading. [Consultado: Julio 5, 2022, 3:24 pm]

Scott TE, Kirkman E, Haque E, Mahoney P, Hardman JG. Primary blast lung injury - a review. British Journal of Anaesthesia, 2017; 118 (3): 311–6.

Scott TE, Johnston A, Keene D, Rana M, Mahoney P. Primary Blast Lung Injury: The UK Military Experience. Military Medicine, 2020; 185, 5/6:e568.

Li J, Zhang J, Shi M, Yu S, Ji M, Liang Y, Meng X. Crosstalk between Inflammation and Hemorrhage/Coagulation Disorders in Primary Blast Lung Injury, Biomolecules 2023, 13, 351. https://doi.org/10.3390/biom13020351.

Jeon D, Kim K, Han S. Modified Equation of Shock Wave Parameters. Computation. 2017; 5(3): 1-14. https://www.mdpi.com/2079-3197/5/3/41 Consultado: Julio 5, 2021, 10:00 am]

Dadashzadeh H, Khan F, Hawboldt K, Amyotte P. An integrated approach for fire and explosion consequence modelling. Fire Safety Journal. 2013; 61: 324-337

Cozzani V, Tugnoli A, Salzano E. Prevention of domino effect: From active and passive strategies to inherently safer design. J Hazard Mater 2007; A139: 209-219.

Khan F, Abbasi SA, Models for Domino Effect Analysis in Chemical Process Industries, Process. Saf. Prog 1998; 17(2): 107-123

Yin-chua, Lu. “Application of Matlab simulation in boiler explosion quantitative safety assessment.” Manufacturing Automation (2012): n. pag.

Birk AM, Davison C, Cunningham M. Blast overpressures from medium scale BLEVE tests. J Loss Prev Process Ind 2007; 20: 194-206.

Van de Berg AC, Lannoy A. 1993. Methods for Vapor Cloud Explosion Blast Modelling. Journal of Hazardous Materials. 1993; 34, 151-171.

Bubbico R, Mazzarotta B. Analysis and comparison of calculation methods for physical explosions of compressed gases. AIDIC Conference Series. 2013; 11: 81-90 DOI: 10.3303/ACOS1311009

Sochet I. Blast effects of external explosions. In: Eighth International Symposium on Hazards, Prevention and Mitigation of Industrial Explosions. Yokohama, Japón: Sep. 2010. https://hal.archives-ouvertes.fr/hal-00629253/document [Consultado: Julio 5, 2022, 3:28 pm]

T. E. Purcell and S. F. Whirl. Protection Against Caustic Embrittlement by Coordinated Phosphate‐pH Control 1943 Trans. Electrochem. Soc. 83 343.

Zareei H, Khosravi-Nikou M, Shariati A. (2016). A Consequence Analysis of the Explosion of Spherical Tanks Containing Liquefied Petreoleum Gas (LPG). Iranian Journal of Oil & Gas Science and Technology. 2016; 5(3): 32-44

Affandi M, Mamat N, Kanafiah S, Khalid N. (2013). Simplified Equations for Saturated Steam Properties for Simulation Purpose. Procedia Engineering 53; 722 – 726.

Cozzani V, Tugnoli A, Salzano E. Prevention of domino effect: From active and passive strategies to inherently safer design. Journal of Hazardous Materials. 2007; A139: 209-219.

Cozzani V, Salzano B. Threshold values for domino effects caused by blast wave interaction with process equipment. Journal of Loss Prevention in the Process Industries. 2004; 17, 437-447.

Cozzani V, Gubinelli G, Salzano B. (2006). Escalation thresholds in the assessment of domino accidental events. Journal of Hazardous Materials. 2006; A129: 1-21.

Finney, D, L. Probit Analysis. Cambridge University Press. Londres, 1971.

López.Molina A, Vázquez-Román R, Sam Mannan M, Félix-Flores MG. An approach for domino effect reduction based on optimal layouts. Journal of Loss Prevention in the Process Industries. 2013; 26: 887-894.

Sajja, V.S., Statz, J.K., Walker, L.P.B. et al. Pulmonary injury risk curves and behavioral changes from blast overpressure exposures of varying frequency and intensity in rats. Sci Rep 10, 16644 (2020). https://doi.org/10.1038/s41598-020-73643-7

Morales-Vargas R. Using MATLAB for calculation of boiler explosion consequences: An application to plant layout using Probit models, J. Res. Technol. Eng. 3 (3), 2022, 21-31

A. Davenport, JACOBS Solutions, comunicación personal, Abril 2023.