Energy integration of a Jatropha curcas biorefinery for the production of biojet fuel

Main Article Content

Araceli Guadalupe Romero-Izquierdo
Laura Daniela Hernández-Jaime
Claudia Gutiérrez-Antonio
Fernando Israel Gómez-Castro
Salvador Hernández

Abstract

The development of processes for renewable aviation fuel production boosts a sustainable recovery of the aviation sector; in such processes, the application of strategies of energy efficiency can improve its economic and environmental competitiveness. In this work is presented the energy integration of a Jatropha curcas (JC) biorefinery for the production of biojet fuel, as the main product, through the pinch point methodology. The energy integration application is based on the construction of two routes, defined by the material exchanges between the integrated processes. Route 1 (R1) considers 7 and 6 hot and cold streams, respectively; whilst in route 2 (R2), 6 and 8 hot and cold streams, respectively. The results show that it is possible to save 82,41 % and 74,89 % on heating and cooling utilities for R1, whilst up 71 % and 87,28 % of savings on heating and cooling utilities for R2. These savings represent less environmental impact, regarding the biorefinery scheme without integration, due to less consumption of external utilities; thereby, the economy of the process could improve significantly.

Article Details

How to Cite
Romero-Izquierdo, A. G., Hernández-Jaime, L. D., Gutiérrez-Antonio, C., Gómez-Castro, F. I., & Hernández, S. (2023). Energy integration of a Jatropha curcas biorefinery for the production of biojet fuel. Tecnología En Marcha Journal, 36(10), Pág. 55–65. https://doi.org/10.18845/tm.v36i10.7011
Section
Artículo científico

References

IEA, “IEA – COVID-19 Topics,” International Energy Agency, 2021. [Online]. Available: https://www.iea.org/topics/covid-19. [Accessed: 01-Sep-2022].

I. E. A. IEA, “World Energy Outlook 2020 – Analysis - IEA,” 2020. [Online]. Available: https://www.iea.org/reports/world-energy-outlook-2020#executive-summary. [Accessed: 24-Jun-2021].

International Air Transport Association (IATA), “IATA - Post-COVID-19 Green Recovery Must Embrace Sustainable Aviation Fuels,” 2021. [Online]. Available: https://www.iata.org/en/pressroom/pr/2020-07-09-01/. [Accessed: 08-Jun-2021].

C. Gutiérrez-Antonio, A. G. Romero-Izquierdo, F. I. Gómez-Castro, and S. Hernández, Production Processes of Renewable Aviation Fuel. Elsevier, 2021.

C. Gutiérrez-Antonio, A. G. Romero-Izquierdo, F. Israel Gómez-Castro, and S. Hernández, “Energy Integration of a Hydrotreatment Process for Sustainable Biojet Fuel Production,” Ind. Eng. Chem. Res., vol. 55, no. 29, pp. 8165–8175, 2016.

C. Gutiérrez-Antonio, A. G. Romero-Izquierdo, F. Israel Gómez-Castro, and S. Hernández, “Energy Integration of a Hydrotreatment Process for Sustainable Biojet Fuel Production,” Ind. Eng. Chem. Res., vol. 55, no. 29, pp. 8165–8175, Jul. 2016.

A. G. Romero-Izquierdo, C. Gutiérrez-Antonio, F. I. Gómez-Castro, and S. Hernández, “Energy Integration and Optimization of the Separation Section in a Hydrotreating Process for the Production of Biojet Fuel,” in Computer Aided Chemical Engineering, vol. 40, Elsevier B.V., 2017, pp. 661–666.

C. Gutiérrez-Antonio, M. L. Soria Ornelas, F. I. Gómez-Castro, and S. Hernández, “Intensification of the hydrotreating process to produce renewable aviation fuel through reactive distillation,” Chem. Eng. Process. - Process Intensif., vol. 124, pp. 122–130, 2018.

C. Gutiérrez-Antonio, A. Gómez-De la Cruz, A. G. Romero-Izquierdo, F. I. Gómez-Castro, and S. Hernández, “Modeling, simulation and intensification of hydroprocessing of micro-algae oil to produce renewable aviation fuel,” Clean Technol. Environ. Policy, vol. 20, no. 7, pp. 1589–1598, 2018.

A. L. Moreno-Gómez, C. Gutiérrez-Antonio, F. I. Gómez-Castro, and S. Hernández, “Modelling, simulation and intensification of the hydroprocessing of chicken fat to produce renewable aviation fuel,” Chem. Eng. Process. - Process Intensif., vol. 159, p. 108250, 2021.

A. G. Romero-Izquierdo, F. I. Gómez-Castro, C. Gutiérrez-Antonio, S. Hernández, and M. Errico, “Intensification of the alcohol-to-jet process to produce renewable aviation fuel,” Chem. Eng. Process. - Process Intensif., vol. 160, p. 108270, 2021.

W. C. Wang, “Techno-economic analysis of a bio-refinery process for producing Hydro-processed Renewable Jet fuel from Jatropha,” Renew. Energy, vol. 95, pp. 63–73, Sep. 2016.

P. Tongpun, W.-C. Wang, and P. Srinophakun, “Techno-economic analysis of renewable aviation fuel production: From farming to refinery processes,” J. Clean. Prod., vol. 226, pp. 6–17, 2019.

A. G. Romero-Izquierdo, F. I. Gómez-Castro, C. Gutiérrez-Antonio, S. Hernández, and M. Errico, “Modelling and simulation of a multiple feedstock integrated biorefinery for the production of aviation biofuel and other biofuels,” in 31st European Symposium on Computer Aided Process Engineering, vol. 50, M. Türkay and R. Gani, Eds. Elsevier, 2021, pp. 1885–1890.

N. H. Florin and A. T. Harris, “Hydrogen production from biomass coupled with carbon dioxide capture: The implications of thermodynamic equilibrium,” Int. J. Hydrogen Energy, vol. 32, no. 17, pp. 4119–4134, 2007.

A. G. Romero-Izquierdo, C. Gutiérrez-Antonio, F. I. Gómez-Castro, and S. Hernández, “Synthesis and intensification of a biorefinery to produce renewable aviation fuel, biofuels, bioenergy and chemical products from Jatropha Curcas fruit,” IET Renew. Power Gener., vol. n/a, no. n/a, 2022.

A. K. Kralj, “Heat integration between two biodiesel processes using a simple method,” Energy and Fuels, vol. 22, no. 3, pp. 1972–1979, May 2008.

C. Gutiérrez-Antonio, A. G. Romero-Izquierdo, F. I. Gómez-Castro, and S. Hernández, Production Processes of Renewable Aviation Fuel, vol. 1. Elsevier, 2021.

A. G. Romero-Izquierdo, “Diseño, modelado y simulación de un esquema de biorefinería para el aprovechamiento integral de mezclas de materias primas renovables,” Univ. Guanajuato, vol. PhD Thesis, 2020.

SIE, “Demanda interna de turbosina por estado 2014-2032,” SENER, 2022. [Online]. Available: https://sie.energia.gob.mx/movil.do?action=cuadro&cvecua=DIPS_PP_C54_E. [Accessed: 05-May-2022].

Most read articles by the same author(s)