Energy integration of a Jatropha curcas biorefinery for the production of biojet fuel
Main Article Content
Abstract
The development of processes for renewable aviation fuel production boosts a sustainable recovery of the aviation sector; in such processes, the application of strategies of energy efficiency can improve its economic and environmental competitiveness. In this work is presented the energy integration of a Jatropha curcas (JC) biorefinery for the production of biojet fuel, as the main product, through the pinch point methodology. The energy integration application is based on the construction of two routes, defined by the material exchanges between the integrated processes. Route 1 (R1) considers 7 and 6 hot and cold streams, respectively; whilst in route 2 (R2), 6 and 8 hot and cold streams, respectively. The results show that it is possible to save 82,41 % and 74,89 % on heating and cooling utilities for R1, whilst up 71 % and 87,28 % of savings on heating and cooling utilities for R2. These savings represent less environmental impact, regarding the biorefinery scheme without integration, due to less consumption of external utilities; thereby, the economy of the process could improve significantly.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación y pueda editarlo, reproducirlo, distribuirlo, exhibirlo y comunicarlo en el país y en el extranjero mediante medios impresos y electrónicos. Asimismo, asumen el compromiso sobre cualquier litigio o reclamación relacionada con derechos de propiedad intelectual, exonerando de responsabilidad a la Editorial Tecnológica de Costa Rica. Además, se establece que los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
References
IEA, “IEA – COVID-19 Topics,” International Energy Agency, 2021. [Online]. Available: https://www.iea.org/topics/covid-19. [Accessed: 01-Sep-2022].
I. E. A. IEA, “World Energy Outlook 2020 – Analysis - IEA,” 2020. [Online]. Available: https://www.iea.org/reports/world-energy-outlook-2020#executive-summary. [Accessed: 24-Jun-2021].
International Air Transport Association (IATA), “IATA - Post-COVID-19 Green Recovery Must Embrace Sustainable Aviation Fuels,” 2021. [Online]. Available: https://www.iata.org/en/pressroom/pr/2020-07-09-01/. [Accessed: 08-Jun-2021].
C. Gutiérrez-Antonio, A. G. Romero-Izquierdo, F. I. Gómez-Castro, and S. Hernández, Production Processes of Renewable Aviation Fuel. Elsevier, 2021.
C. Gutiérrez-Antonio, A. G. Romero-Izquierdo, F. Israel Gómez-Castro, and S. Hernández, “Energy Integration of a Hydrotreatment Process for Sustainable Biojet Fuel Production,” Ind. Eng. Chem. Res., vol. 55, no. 29, pp. 8165–8175, 2016.
C. Gutiérrez-Antonio, A. G. Romero-Izquierdo, F. Israel Gómez-Castro, and S. Hernández, “Energy Integration of a Hydrotreatment Process for Sustainable Biojet Fuel Production,” Ind. Eng. Chem. Res., vol. 55, no. 29, pp. 8165–8175, Jul. 2016.
A. G. Romero-Izquierdo, C. Gutiérrez-Antonio, F. I. Gómez-Castro, and S. Hernández, “Energy Integration and Optimization of the Separation Section in a Hydrotreating Process for the Production of Biojet Fuel,” in Computer Aided Chemical Engineering, vol. 40, Elsevier B.V., 2017, pp. 661–666.
C. Gutiérrez-Antonio, M. L. Soria Ornelas, F. I. Gómez-Castro, and S. Hernández, “Intensification of the hydrotreating process to produce renewable aviation fuel through reactive distillation,” Chem. Eng. Process. - Process Intensif., vol. 124, pp. 122–130, 2018.
C. Gutiérrez-Antonio, A. Gómez-De la Cruz, A. G. Romero-Izquierdo, F. I. Gómez-Castro, and S. Hernández, “Modeling, simulation and intensification of hydroprocessing of micro-algae oil to produce renewable aviation fuel,” Clean Technol. Environ. Policy, vol. 20, no. 7, pp. 1589–1598, 2018.
A. L. Moreno-Gómez, C. Gutiérrez-Antonio, F. I. Gómez-Castro, and S. Hernández, “Modelling, simulation and intensification of the hydroprocessing of chicken fat to produce renewable aviation fuel,” Chem. Eng. Process. - Process Intensif., vol. 159, p. 108250, 2021.
A. G. Romero-Izquierdo, F. I. Gómez-Castro, C. Gutiérrez-Antonio, S. Hernández, and M. Errico, “Intensification of the alcohol-to-jet process to produce renewable aviation fuel,” Chem. Eng. Process. - Process Intensif., vol. 160, p. 108270, 2021.
W. C. Wang, “Techno-economic analysis of a bio-refinery process for producing Hydro-processed Renewable Jet fuel from Jatropha,” Renew. Energy, vol. 95, pp. 63–73, Sep. 2016.
P. Tongpun, W.-C. Wang, and P. Srinophakun, “Techno-economic analysis of renewable aviation fuel production: From farming to refinery processes,” J. Clean. Prod., vol. 226, pp. 6–17, 2019.
A. G. Romero-Izquierdo, F. I. Gómez-Castro, C. Gutiérrez-Antonio, S. Hernández, and M. Errico, “Modelling and simulation of a multiple feedstock integrated biorefinery for the production of aviation biofuel and other biofuels,” in 31st European Symposium on Computer Aided Process Engineering, vol. 50, M. Türkay and R. Gani, Eds. Elsevier, 2021, pp. 1885–1890.
N. H. Florin and A. T. Harris, “Hydrogen production from biomass coupled with carbon dioxide capture: The implications of thermodynamic equilibrium,” Int. J. Hydrogen Energy, vol. 32, no. 17, pp. 4119–4134, 2007.
A. G. Romero-Izquierdo, C. Gutiérrez-Antonio, F. I. Gómez-Castro, and S. Hernández, “Synthesis and intensification of a biorefinery to produce renewable aviation fuel, biofuels, bioenergy and chemical products from Jatropha Curcas fruit,” IET Renew. Power Gener., vol. n/a, no. n/a, 2022.
A. K. Kralj, “Heat integration between two biodiesel processes using a simple method,” Energy and Fuels, vol. 22, no. 3, pp. 1972–1979, May 2008.
C. Gutiérrez-Antonio, A. G. Romero-Izquierdo, F. I. Gómez-Castro, and S. Hernández, Production Processes of Renewable Aviation Fuel, vol. 1. Elsevier, 2021.
A. G. Romero-Izquierdo, “Diseño, modelado y simulación de un esquema de biorefinería para el aprovechamiento integral de mezclas de materias primas renovables,” Univ. Guanajuato, vol. PhD Thesis, 2020.
SIE, “Demanda interna de turbosina por estado 2014-2032,” SENER, 2022. [Online]. Available: https://sie.energia.gob.mx/movil.do?action=cuadro&cvecua=DIPS_PP_C54_E. [Accessed: 05-May-2022].