Energy valorization of cassava residual biomass for high-energy value precursors: pyrolysis case

Main Article Content

Loraine I. Dávila-Caro
Katherine Pugliese-Barbosa
York Castillo-Santiago
Alberto R. Albis-Arrieta
Diego M. Yepes-Maya
Eric A. Ocampo-Batlle
María L. Grillo-Renó
Angie L. Espinosa-Sarmiento
Juan B. Restrepo-Betancourt

Abstract

The present work studied the pyrolysis of cassava residues through a thermogravimetric analysis (TGA). For this purpose, the selected biomass (cassava) was characterized by its calorific value, immediate analysis, and elemental analysis. For the experiments, three heating rates (50, 75, and 100 K/min) were used under in an inert atmosphere with a heating ramp from room temperature (~25 °C) to 900 °C. The initial characterization results showed an ash content of 1.8% by mass and a calorific value of 15.2 MJ/kg, making this residue a promising candidate for energy use through thermochemical conversion processes. On the other hand, during heat treatment under an inert atmosphere, the cassava residue experienced a major mass loss event at 339.57 °C for 50 and 75 K/min (the greatest mass loss was at 50 K/min, resulting in 12.15% of the char) and displaced 34 °C when the sample was treated at 100 K/min.  From the kinetic analysis, it was observed  that the activation energy increases as the conversion increases, whereas the Friedman method which presents high activation energies of 93.98, 190.98 and 182.1 kJ/mol at 0.15, 0.85 and 0.95 respectively. OFW and KAS methods present a similar behavior for the activation energy dependence on conversion, and the variation is minor between the results obtained with each of them.

Article Details

How to Cite
Dávila-Caro, L. I., Pugliese-Barbosa, K., Castillo-Santiago, Y., Albis-Arrieta, A. R., Yepes-Maya, D. M., Ocampo-Batlle, E. A., … Restrepo-Betancourt, J. B. (2023). Energy valorization of cassava residual biomass for high-energy value precursors: pyrolysis case. Tecnología En Marcha Journal, 36(10), Pág. 16–26. https://doi.org/10.18845/tm.v36i10.7007
Section
Artículo científico

References

Ayodele, T. R., Ogunjuyigbe, A. S. O., & Alao, M. A. (2017). Life cycle assessment of waste-to-energy (WtE) technologies for electricity generation using municipal solid waste in Nigeria. Applied Energy, 201, 200–218. doi:10.1016/j.apenergy.2017.05.097

AIE (2021), World Energy Outlook 2021 , AIE, París https://www.iea.org/reports/world

Pali R a, Sandeep K Hussameldin I, Sensitivity analysis of biomass pyrolysis for renewable fuel production using Aspen Plus, 2022. 0360-5442/Crown Copyright © 2022 Published by Elsevier Ltd. All rights reserved. https://doi.org/10.1016/j.energy.2022.123545

Okolie, J. A., Nanda, S., Dalai, A. K., & Kozinski, J. A. (2021). Chemistry and Specialty Industrial Applications of Lignocellulosic Biomass. Waste and Biomass Valorization, 12(5), 2145–2169. https://doi.org/10.1007/s12649-020-01123-0

Tursi, A. (2019). A review on biomass: Importance, chemistry, classification, and conversion. Biofuel Research Journal, 6(2), 962–979. https://doi.org/10.18331/BRJ2019.6.2.3

Saravanan, A., Senthil Kumar, P., Jeevanantham, S., Karishma, S., & Vo, D. V. N. (2022). Recent advances and sustainable development of biofuels production from lignocellulosic biomass. Bioresource Technology, 344(PB), 126203. https://doi.org/10.1016/j.biortech.2021.126203

Poveda-Giraldo, J. A., Solarte-Toro, J. C., & Cardona Alzate, C. A. (2021). The potential use of lignin as a platform product in biorefineries: A review. Renewable and Sustainable Energy Reviews, 138(January), 110688.

Alhazmi, H., & Loy, A. C. M. (2021). A review on environmental assessment of conversion of agriculture waste to bio-energy via different thermochemical routes: Current and future trends. Bioresource Technology Reports, 14(March), 100682. https://doi.org/10.1016/j.biteb.2021.100682

Ding, Y., Zhang, Y., Zhang, J., Zhou, R., Ren, Z., & Guo, H. (2019). Kinetic parameters estimation of pinus sylvestris pyrolysis by Kissinger-Kai method coupled with Particle Swarm Optimization and global sensitivity analysis. Bioresource Technology, 293, 122079. doi:10.1016/j.biortech.2019.122079

Andreas Drexler, Liese Vandewalle, Tom Depover, Kim Verbeken, Josef Domitner, Critical verification of the Kissinger theory to evaluate thermal desorption spectra, International Journal of Hydrogen Energy, Volume 46, Issue 79, 2021, Pages 39590-39606, ISSN 0360-3199,https://doi.org/10.1016/j.ijhydene.2021.09.171.

A. Standard, “E1641-07, standard test method for decomposition kinetics by thermogravimetry,” ASTM Int. West Conshohocken, PA, vol. i, pp. 1–6, 2007, doi: 10.1520/E1641-07.2.

Font, R., & Garrido, M. A. (2018). Friedman and n-reaction order methods applied to pine needles and polyurethane thermal decompositions. Thermochimica Acta, 660, 124–133. doi:10.1016/j.tca.2018.01.002

Phuakpunk, K., Chalermsinsuwan, B., & Assabumrungrat, S. (2020). Comparison of chemical reaction kinetic models for corn cob pyrolysis. Energy Reports, 6, 168–178. doi:10.1016/j.egyr.2020.08.041

Edreis, E. M. A., & Yao, H. (2016). Kinetic thermal behaviour and evaluation of physical structure of sugar cane bagasse char during non-isothermal steam gasification. Journal of Materials Research and Technology, 5(4), 317–326. doi:10.1016/j.jmrt.2016.03.006

S. Vyazovkin et al., “ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations,” Thermochim. Acta, vol. 590, pp. 1–23, 2014, doi: 10.1016/j.tca.2014.05.036.

S. Clemente-Castro, A. Palma, M. Ruiz-Montoya, I. Giráldez, M.J. Díaz, Pyrolysis kinetic, thermodynamic and product analysis of different leguminous biomasses by Kissinger-Akahira-Sunose and pyrolysis-gas chromatography-mass spectrometry. Journal of Analytical and Applied Pyrolysis, Volume 162, 2022, 105457, ISSN 0165-2370, https://doi.org/10.1016/j.jaap.2022.105457.

Zanatta, E. R., Reinehr, T. O., Awadallak, J. A., Kleinübing, S. J., dos Santos, J. B. O., Bariccatti, R. A., Arroyo, P. A., & da Silva, E. A. (2016). Kinetic studies of thermal decomposition of sugarcane bagasse and cassava bagasse. Journal of Thermal Analysis and Calorimetry, 125(1), 437–445. https://doi.org/10.1007/s10973-016-5378-x

Dhyani, V., & Bhaskar, T. (2018). A comprehensive review on the pyrolysis of lignocellulosic biomass. Renewable Energy, 129, 695–716. https://doi.org/10.1016/j.renene.2017.04.035

Borel, L. D. M. S., de Lira, T. S., Ataíde, C. H., & de Souza Barrozo, M. A. (2021). Thermochemical conversion of coconut waste: material characterization and identification of pyrolysis products. Journal of Thermal Analysis and Calorimetry, 143(1), 637–646. https://doi.org/10.1007/s10973-020-09281-y

Sohni, S., Norulaini, N. A. N., Hashim, R., Khan, S. B., Fadhullah, W., & Mohd Omar, A. K. (2018). Physicochemical characterization of Malaysian crop and agro-industrial biomass residues as renewable energy resources. Industrial Crops and Products, 111(June 2017), 642–650. https://doi.org/10.1016/j.indcrop.2017.11.031

Wang, Z., Burra, K. G., Lei, T., & Gupta, A. K. (2021). Co-pyrolysis of waste plastic and solid biomass for synergistic production of biofuels and chemicals-A review. Progress in Energy and Combustion Science, 84, 100899. https://doi.org/10.1016/j.pecs.2020.100899

Ozturk, M., Saba, N., Altay, V., Iqbal, R., Hakeem, K. R., Jawaid, M., & Ibrahim, F. H. (2017). Biomass and bioenergy: An overview of the development potential in Turkey and Malaysia. Renewable and Sustainable Energy Reviews, 79(April 2016), 1285–1302. https://doi.org/10.1016/j.rser.2017.05.111

Nanduri, A., Kulkarni, S. S., & Mills, P. L. (2021). Experimental techniques to gain mechanistic insight into fast pyrolysis of lignocellulosic biomass: A state-of-the-art review. Renewable and Sustainable Energy Reviews, 148(July 2020), 111262.

Weerachanchai, P., Tangsathitkulchai, C., & Tansathitkulchai, M. (2010). Comparison of pyrolysis kinetic models for thermogravimetric analysis of biomass. Suranaree Journal of Science Technologies, 17(4), 387–400. http://ird.sut.ac.th/e-journal/document/contents/Journal17(4)/Vol.17 No.4 PART 7.pdf

Müsellim, E., Tahir, M. H., Ahmad, M. S., & Ceylan, S. (2018). Thermokinetic and TG/DSC-FTIR study of pea waste biomass pyrolysis. Applied Thermal Engineering, 137(March), 54–61. https://doi.org/10.1016/j.applthermaleng.2018.03.050

Alvarado Flores, J. J., & Rutiaga Quiñones, J. G. (2018). Estudio de cinética en procesos termogravimétricos de materiales lignocelulósicos. Maderas. Ciencia y Tecnología, (ahead), 0–0. doi:10.4067/s0718-221x2018005002601