The development of biodegradable plastic from hemp by microbial stimulus

Main Article Content

Johanna Marcela Moscoso-Gama
María Camila Sanabria-Cuervo
Ana María Sánchez-Rubiano

Abstract

Currently, several industries have opted for the use of Cannabis sativa for different purposes, this time the capacity of the hemp stem fiber in conjunction with the Ralstonia eutropha bacterium for innovation of biodegradable plastics is highlighted, taking advantage of its potential for the generation of PHB (Polyhydroxybutyrate). This review article supports the analysis of sources such as scientific articles and research papers related to the artisanal and industrial manipulation of hemp fibers, as well as previous research regarding the production of PHA by the bacteria. The perspective is to develop a methodology with easily accessible resources in Colombia. The results show that the investigations carried out recently and the raw material is a good factor in economy, management, and progress; Additionally, different studies show that cassava is recognized as a great source of carbon that increases the potential for PHB production by the bacteria. It is concluded that its composting does not require third parties. Still, only the environment because of the power that Ralstonia eutropha has to produce PHB and that under conditions of physiological stress, it is capable of degrading, allowing to reduce the impact of the degradation of the material in the environment without contamination or residual microplastics.

Article Details

How to Cite
Moscoso-Gama, J. M., Sanabria-Cuervo, M. C., & Sánchez-Rubiano, A. M. (2024). The development of biodegradable plastic from hemp by microbial stimulus. Tecnología En Marcha Journal, 37(2), Pág. 82–94. https://doi.org/10.18845/tm.v37i2.6712
Section
Artículo científico

References

Perspectiva sobre el estudio “Breaking the plastic wave” LA SOLUCIÓN DE LA ECONOMÍA CIRCULAR A LA CONTAMINACIÓN DE PLÁSTICO. Ellen MacArthur foundation. [Internet]. 2020 [Consultado 05-05-2023]. Disponible en: https://archive.ellenmacarthurfoundation.org/assets/downloads/PEW-resumen-ejecutivo.pdf

Braking the plastic wave. A comprehensive assesment of path ways toward stopping ocean plastics pollution. SYSTEMIQ. [Internet]. 2020. [Consultado 05-03-2023]. Disponible en: https://www.systemiq.earth/wp-content/uploads/2020/07/BreakingThePlasticWave_ExecutiveSummary.pdf

Sumpter L. ¿Podría el plástico de cáñamo cambiar el mundo? [Internet] CANNA CONNECTION. 2020 [Consultado 05-05-2023]. Disponible en: https://www.cannaconnection.com/es/blog/18298-podria-plastico-canamo-cambiar-mundo#:~:text=En%20el%20entorno%20adecuado%2C%20los,hasta%20450%20a%C3%B1os%20en%20degradarse.

Fassio A, Rodriguez M y Caretta s. CÁÑAMO (Cannabis Sativa L). 1th edición. Uruguay. INIA; 2013. Disponible en: https://catalogo.latu.org.uy/opac_css/doc_num.php?explnum_id=2348

Lemos C y Cordoba A. Polihidroxialcanoatos (PHA) producidos por bacterias y su posible aplicación a nivel industrial. Informador Técnico (Colombia). [Internet]. 2015. [Consultado 10-04-2021]. 79(1). Disponible en: file:///C:/Users/ASUS/Downloads/Dialnet-Polihidroxialcanoatos PHAs Producidos PorBacteriasYSu-5290930.pdf

Brigham C. Perspectivas for the biotechnological production of biofuels from CO2 and H2 using Ralstonia eutropha an other ‘kallgas’ bacteria. Springsteen. [Internet]. 2019.[consultado 10-04-2021]

Li Z, Xin X, Xiong B, Zhao D, Zhang X, Bi C. Engineering the calvin - benson - básicamente cycle and hidrógeno utilization pathway of Ralstonia eutropha for improved autotrophic growth and Polyhydroxybutyrate production. BCM. [Internet].2020 [Consultado 01-02-2022]; 19(228).

Díaz A. Identificación y enriquecimiento de un consorcio bacteriano en aguas y lodos residuales de origen doméstico para producir biopolímero del tipo polihidroxialcanoatos PHA´s: Revisión documental. Universidad Colegio Mayor de Cundinamarca. [Internet]. 2021. [Consultado 05-03-2023]. Disponible en: https://repositorio.unicolmayor.edu.co/bitstream/handle/unicolmayor/5606/Identificaci%c3%b3n%20y%20enriquecimiento%20de%20un%20consorcio%20bacteriano%20en%20aguas%20y%20lodos%20residuales%20de%20origen%20dom%c3%a9stico%20para%20producir%20biopol%c3%admeros%20del%20tipo%20polihidroxialcanoatos%20PHA%e2%80%99s%20revisi%c3%b3.pdf?sequence=4&isAllowed=y

García D. Establecimiento de una estrategia para la producción de PHA de Ralstonia eutropha ATTC 17699. Universidad de Antioquia. [Internet]. 2023. [Consultado 05-05-2023]. Disponible en: https://bibliotecadigital.udea.edu.co/bitstream/10495/33677/1/Garc%c3%adaDavid_2023_Biopol%c3%admerosEstrategiaVinaza%20-%20.pdf

Alcaraz W, Acosta A y Villa A. Evaluación de la producción de polihidroxialcanoatos (PHAs) de aislado bacteriano, empleando hidrolizados de harina de yuca con sustrato alternativo. DYNA. [Internet]. 2018. [Consultado 01-02-2022]. Disponible en: https://media.proquest.com/media/hms/PFT/1/NIbC9?_s=njQT9dqD7LUzMjZLdY8OakpmZoU%3D

Vargas Y, Pasmiño J, Javier D. Revista polítécnica [internet].2021[consultado 15-06-2022]. 48(2). Disponible en: http://scielo.senescyt.gob.ec/pdf/rpolit/v48n2/2477-8990-rpolit-48-02-7.pdf

CONPES. Política de crecimiento verde. Departamento nacional de planeación. [Internet]. 2018. [Consultado 10-04-2021]. Disponible: página oficial del CONPES

Pertuz A., Benavides R. (2021). Alternativa verde: Bioplásticos elaborados con biopolímeros de origen renovable - revisión. Universidad Nacional Abierta y a Distancia. Vol. 2 Núm. 1 Disponible en: https://hemeroteca.unad.edu.co/index.php/wpecbti/article/view/4793/5184

E. Xanthopoulou et al, “Evaluation of Eco-Friendly Hemp-Fiber-Reinforced Recycled HDPE Composites,” Journal of Composites Science, vol. 7, (4), pp. 138, 2023. Available: https://ezproxy.unicolmayor.edu.co/login?url=https://www.proquest.com/scholarly-journals/evaluation-eco-friendly-hemp-fiber-reinforced/docview/2806541717/se-2. DOI: https://doi.org/10.3390/jcs7040138.

B. Farinon, R. Molinari, L. Costantini y N. Merendino, “La semilla de cáñamo industrial (Cannabis sativa L.): calidad nutricional y funcionalidad potencial para la salud y la nutrición humanas”, Nutrients , vol . 12, núm. 7, pág. 1935, junio de 2020, doi: 10.3390/nu12071935.

Musio S, Müssig J y Amaducci S (2018) Optimización de la producción de fibra de cáñamo para aplicaciones de compuestos de alto rendimiento. Frente. ciencia de las plantas 9:1702. doi: 10.3389/fpls.2018.01702

F. Iucolano, B. Liguori, P. Aprea, and D. Caputo, “Evaluation of bio-degummed hemp fibers as reinforcement in gypsum plaster,” vol. 138, pp. 149–156, 2018, doi: 10.1016/j.compositesb.2017.11.037. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1359836817322023

Y. Ren et al., “A new method for bio-degumming in less-water environment: Solid-state-fermentation progressive bio-degumming,” vol. 183, p. 114986, 2022, doi: 10.1016/j.indcrop.2022.114986.

Cheng, Lifeng & Duan, Shengwen & Feng, Xiangyuan & Zheng, Ke & Yang, Qi & Xu, Huan & Luo, Wei & Peng, Yuande. (2020). Ramie-degumming methodologies: A short review. Journal of Engineered Fibers and Fabrics. 15. 155892502094010. 10.1177/1558925020940105.

R. Abraham, C. Wong, and M. Puri, “Enrichment of Cellulosic Waste Hemp (Cannabis sativa) Hurd into Non-Toxic Microfibres,” Materials, vol. 9, no. 7, p. 562, Jul. 2016, doi: 10.3390/ma9070562. [Online]. Available: http://dx.doi.org/10.3390/ma9070562

S. Behera, M. Priyadarshanee, Vandana, and S. Das, “Polyhydroxyalkanoates, the bioplastics of microbial origin: Properties, biochemical synthesis, and their applications,” vol. 294, p. 133723, 2022, doi: 10.1016/j.chemosphere.2022.133723.

Zhang, L., Jiang, Z., Tsui, T. H., Loh, K. C., Dai, Y., & Tong, Y. W. (2022). A Review on Enhancing Cupriavidus necator Fermentation for Poly(3-hydroxybutyrate) (PHB) Production From Low-Cost Carbon Sources. Frontiers in bioengineering and biotechnology, 10, 946085. https://doi.org/10.3389/fbioe.2022.946085

Hamdy, S.M., Danial, A.W., Gad El-Rab, S.M.F. et al. Production and optimization of bioplastic (Polyhydroxybutyrate) from Bacillus cereus strain SH-02 using response surface methodology. BMC Microbiol 22, 183 (2022). https://doi.org/10.1186/s12866-022-02593-z

M. Narayanan, S. Kandasamy, S. Kumarasamy, K. Gnanavel, M. Ranganathan, and G. Kandasamy, “Screening of polyhydroxybutyrate producing indigenous bacteria from polluted lake soil,” vol. 6, no. 10, p. e05381, 2020, doi: 10.1016/j.heliyon.2020.e05381.

O. Y. Buitrago, P. J. Rodríguez, and M. J. Monroy, “Biodegradación Temprana en Suelo de Biocompuestos Elaborados con Poli-3-hidroxbutirato, Policaprolactona y Aserrín de Cannabis Indica-Rusia Blanca,” vol. 29, no. 6, pp. 103–112, 2018.

Touchaleaume, Francois & Tessier, Romain & Caillol, Sylvain & Hoppe, Sandrine & Angellier-Coussy, Hélène. (2019). Polyhydroxybutyrate/Hemp Biocomposite: Tuning Performances by Process and Compatibilization. Green Materials. 7. 1-10. 10.1680/jgrma.19.00005.

Acquavia, M. A., Pascale, R., Martelli, G., Bondoni, M., & Bianco, G. (2021). Natural Polymeric Materials: A Solution to Plastic Pollution from the Agro-Food Sector. Polymers, 13(1), 158. https://doi.org/10.3390/polym13010158

Mesa. C, (2023).Maquinas de Extrusión Tornillo Doble y Tornillo Sencillo. IMS, https://maquinariaparaplasticos.com/maquinas/maquinas-extrusion-tornillo-doble/

M. Hyvärinen, R. Jabeen, and T. Kärki, “The Modelling of Extrusion Processes for Polymers—A Review,” Polymers, vol. 12, no. 6, p. 1306, Jun. 2020, doi: 10.3390/polym12061306. [Online]. Available: http://dx.doi.org/10.3390/polym12061306

(2023).What is plastic extrusion?. TWI, recuperado de: https://www.twi-global.com/technical-knowledge/faqs/plastic-extrusion#:~:text=Plastics%20extrusion%20is%20a%20normally,drops%20on%20a%20rotating%20screw.

McAdam, B., Brennan Fournet, M., McDonald, P., & Mojicevic, M. (2020). Production of Polyhydroxybutyrate (PHB) and Factors Impacting Its Chemical and Mechanical Characteristics. Polymers, 12(12), 2908. https://doi.org/10.3390/polym12122908

Ahmed, A. T. M. F., Islam, M. Z., Mahmud, M. S., Sarker, M. E., & Islam, M. R. (2022). Hemp as a potential raw material toward a sustainable world: A review. Heliyon, 8(1), e08753. https://doi.org/10.1016/j.heliyon.2022.e08753