Response to the drip fertigation in paddy (orriza sativa, conarroz 3 variety) in the costarican humid tropic

Main Article Content

Gregory Guevara
Alexander Mendoza

Abstract

Rice is one of the most widely produced crops worldwide, the development of technological service packs that help to increase its sustainability leads to positive impacts on economies and environments at a global level. The objective of this experiment was to demonstrate the efficiency in the productivity of drip fertigation system in the Conarroz 3 variety. The materials and methods used were two plots of 1000 m2 each, where different nutritional levels were applied, the irrigation hoses had drippers (40 cm spacing) with flow of 1 l·h-1, spaced every 1 m between them. The experiment was run in two production cycles to analyze the climate impact on production. The Results has shown with nutritional doses applied to 100% of its requirement, with fertigation it was possible to produce 6.1 to 6.5 Ton·ha-1 with a water yield of 8-7 kg·ha-1·mm-1 irrigated, the productivity exceeded in more than 15%, comparing to what could be obtained in a Control with conventionally fertilization applied to the soil. A response of the variety to climatic variation was observed, where the production window from May to September showed better yields results, it was produced by higher radiations and temperatures during the test. Conclusion: it is possible to increase production via fertigation in the Conarroz 3 variety and thus introduce drip irrigation in rice as an instrument to increase yields.

Article Details

How to Cite
Guevara, G., & Mendoza, A. (2024). Response to the drip fertigation in paddy (orriza sativa, conarroz 3 variety) in the costarican humid tropic. Tecnología En Marcha Journal, 37(1), Pág. 102–113. https://doi.org/10.18845/tm.v37i1.6570
Section
Artículo científico

References

P. A. Seck, A. Diagne, S. Mohanty, and M. C. S. Wopereis, “Crops that feed the world 7: Rice,” Food Security, vol. 4, no. 1, Mar. 2012, doi: 10.1007/s12571-012-0168-1.

FAO, “El Arroz y la Nutrición Humana,” in FAO Rice Conference , 2004, no. Cuadro 1.

CONARROZ, “Informe Anual Estadístico 2019-2020,” San José, 2020.

A. Fukushima, I. Perera, K. Hosoya, T. Akabane, and N. Hirotsu, “Genotypic differences in the effect of p fertilization on phytic acid content in rice grain,” Plants, vol. 9, no. 2, 2020, doi: 10.3390/plants9020146.

T. Ye et al., “Nitrogen, phosphorus, and potassium fertilization affects the flowering time of rice (Oryza sativa L.),” Global Ecology and Conservation, vol. 20, 2019, doi: 10.1016/j.gecco. 2019.e00753.

P. Waller and M. Yitayew, Irrigation and Drainage Engineering. Cham: Springer International Publishing, 2016. doi: 10.1007/978-3-319-05699-9.

M. M. Keerthi, R. Babu, N. S. Venkataraman, and P. P. Mahendran, “Influence of Irrigation Scheduling with Levels and Times of Nitrogen Application on Root Growth of Aerobic Rice,” American Journal of Plant Sciences, vol. 09, no. 11, 2018, doi: 10.4236/ajps.2018.911166.

J. Solano and R. Villalobos, “Regiones y subregiones climáticas de Costa Rica,” San José , 2000.

A. González Huerta, D. D. J. Pérez López, M. Rubí Arriaga, F. Gutiérrez Rodríguez, J. R. P. Franco Martínez, and A. Padilla Lara, “InfoStat, InfoGen y SAS para contrastes mutuamente ortogonales en experimentos en bloques completos al azar en parcelas subdivididas,” Revista Mexicana de Ciencias Agrícolas, vol. 10, no. 6, Sep. 2019, doi: 10.29312/remexca.v10i6.1767.

F. Soto-Bravo and M. I. González-Lutz, “Análisis de métodos estadísticos para evaluar el desempeño de modelos de simulación en cultivos hortícolas,” Agronomía Mesoamericana, May 2019, doi: 10.15517/am.v30i2.33839.

V. Ramulu, V. P. Rao, M. U. Devi, K. A. Kumar, and K. Radhika, “Evaluation of drip irrigation and fertigation levels in aerobic rice for higher water productivity,” 2nd World Irrigation Forum, November 6-8, 2016, Chiang Mai, Thailand, no. November 6-8, 2016, Chiang Mai, Thailand W.3.1.02, 2016.

L. Juana, L. Rodríguez-Sinobas, R. Sánchez, and A. Losada, “Evaluation of drip irrigation: Selection of emitters and hydraulic characterization of trapezoidal units,” Agricultural Water Management, vol. 90, no. 1–2, May 2007, doi: 10.1016/j.agwat.2007.01.007.

L. A. Barahona-Amores, J. E. Villarreal-Núñez, W. González-Carrasco, and E. I. Quiro-Mclntire, “Absorption of nutrients in rice in an inceptisol soil under irrigation in Coclé, Panamá,” Agronomy Mesoamerican, vol. 30, no. 2, pp. 407–424, 2019, doi: 10.15517/am.v30i2.33997.

E. Molina and J. Hernán Rodríguez, “FERTILIZACIÓN CON N, P, K y S, y CURVAS DE ABSORCIÓN DE NUTRIMENTOS EN ARROZ VAR. CFX 18 EN GUANACASTE,” 2012. [Online]. Available: www.mag.go.cr/revagr/index.htmlwww.cia.ucr.ac.cr

H. S. Sidhu et al., “Sub-surface drip fertigation with conservation agriculture in a rice-wheat system: A breakthrough for addressing water and nitrogen use efficiency,” Agricultural Water Management, vol. 216, 2019, doi: 10.1016/j.agwat.2019.02.019.

M. A. Adekoya et al., “Agronomic and Ecological Evaluation on Growing Water-Saving and Drought-Resistant Rice (Oryza sativa L.) Through Drip Irrigation,” Journal of Agricultural Science, vol. 6, no. 5, 2014, doi: 10.5539/jas.v6n5p110.

T. Parthasarathi, K. Vanitha, S. Mohandass, and E. Vered, “Evaluation of drip irrigation system for water productivity and yield of rice,” Agronomy Journal, vol. 110, no. 6, 2018, doi: 10.2134/agronj2018.01.0002.

Y. Tapia-Torres and F. García-Oliva, “Phosphorus Availability is a Product of Soil Bacterial Activity in Oligotrophic Ecosystems: a Critical Review,” Terra Latinoamericana, vol. 31, no. 3, pp. 231–242, 2013.

R. Villalobos and N. Rojas, “Descripción del clima del cantón de Limón ,” San José , 2016.

T. Talaviya, D. Shah, N. Patel, H. Yagnik, and M. Shah, “Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides,” Artificial Intelligence in Agriculture, vol. 4, 2020, doi: 10.1016/j.aiia.2020.04.002.

P. K. Singh, P. C. Srivastava, R. Sangavi, P. Gunjan, and V. Sharma, “Rice water management under drip irrigation: an effective option for high water productivity and efficient zinc applicabilty,” 2019. [Online]. Available: https://www.researchgate.net/publication/336032215

T. F. Han et al., “Variation in rice yield response to fertilization in China: Meta-analysis,” Scientia Agricultura Sinica, vol. 52, no. 11, 2019, doi: 10.3864/j.issn.0578-1752.2019.11.007.

S. K. Natarajan, V. K. Duraisamy, G. Thiyagarajan, and M. Manikandan, “Evaluation of Drip Fertigation System for Aerobic Rice in Western Zone of Tamil Nadu,” International Journal of Plant & Soil Science, 2020, doi: 10.9734/ijpss/2020/v32i730303.

S. Monaco, P. Bottazzi, and F. Altobelli, “Performance of different rice varieties under drip irrigation,” 2020. doi: 10.1109/MetroAgriFor50201.2020.9277628.

P. Cordero Flores and F. Manzaneda Delgado, “Evaluación agronómica de seis variedades de arroz (Oryza sativa L.) sembradas en dos épocas bajo riego, en el municipio de San Buenaventura, Bolivia,” Revista de Investigación e Innovación Agropecuaria y de Recursos Naturales, vol. 8, no. 1, Apr. 2021, doi: 10.53287/xivu8492oe20n.

T. Parthasarathi, K. Vanitha, S. Mohandass, E. Vered, and V. Meenakshi, “Variation in rice root traits assessed by phenotyping under drip irrigation,” F1000Res, vol. 6, 2017, doi: 10.12688/f1000research.9938.1.

N. Beser, H. Surek, S. Sahin, R. Kaya, B. Tuna, and R. Cakir, “An investigation of various drip irrigation treatments in rice (Oryza sativa L.),” Fresenius Environmental Bulletin, vol. 25, no. 9, 2016.

T. Parthasarathi, K. Vanitha, S. Mohandass, and E. Vered, “Mitigation of methane gas emission in rice by drip irrigation,” F1000Res, vol. 8, 2019, doi: 10.12688/f1000research.20945.1.

R. Joshi, “Aerobic rice: Water use sustainability,” Oryza Vol. 46. No.1, 2009 , vol. 46, no. 1, 2009, [Online]. Available: https://www.researchgate.net/publication/215894471