Polyhydroxyalkanoates (PHAs) in bacteria as an alternative to environmental pollution increase: metabolic analysis and current advances

Main Article Content

Steven Ceciliano-Castro
Daniela Vargas-Morera
Roselind Vargas-Delgado
Melany Villanueva-Ilama
Dayana Mora-Rodríguez

Abstract

Polyhydroxyalkanoates (PHA) are biodegradable plastics synthesized by a wide variety of microorganisms and are identified by sharing very similar characteristics with petrochemical plastics. These biopolymers can be used to replace plastic materials, the same ones that currently represent a major environmental pollution problem as they are poorly degradable. The most recent studies focus on the search for PHA extraction strategies, using bioremediation in petrochemical plastics, fuels, and in water treatment that seek to reduce the impact of environmental pollution. All this is carried out through chemical reactions that bacteria carry out with carbon sources, generating PHA while contaminating waste is eliminated. The main advantage of these compared to petroleum-derived plastics is that being produced by microorganisms. The objective of this review is to show the production of polyhydroxyalkanoates in bacteria as an alternative to the increase in environmental pollution.

Article Details

How to Cite
Ceciliano-Castro, S., Vargas-Morera, D., Vargas-Delgado , R., Villanueva-Ilama, M., & Mora-Rodríguez, D. (2024). Polyhydroxyalkanoates (PHAs) in bacteria as an alternative to environmental pollution increase: metabolic analysis and current advances. Tecnología En Marcha Journal, 37(2), Pág. 60–69. https://doi.org/10.18845/tm.v37i2.6493
Section
Artículo científico

References

L. Lebreton y A. Andrady, «Future scenarios of global plastic waste generation and disposal», Palgrave Commun, vol. 5, n.o 1, Art. n.o 1, ene. 2019, doi: 10.1057/s41599-018-0212-7.

T. Pittmann y H. Steinmetz, «Polyhydroxyalkanoate Production on Waste Water Treatment Plants: Process Scheme, Operating Conditions and Potential Analysis for German and European Municipal Waste Water Treatment Plants», Bioengineering (Basel), vol. 4, n.o 2, p. 54, jun. 2017, doi: 10.3390/bioengineering4020054.

A. B. Akinmulewo y O. C. Nwinyi, «Polyhydroxyalkanoate: a biodegradable polymer (a mini review)», J. Phys.: Conf. Ser., vol. 1378, n.o 4, p. 042007, dic. 2019, doi: 10.1088/1742-6596/1378/4/042007.

S. Riaz, K. Y. Rhee, y S. J. Park, «Polyhydroxyalkanoates (PHAs): Biopolymers for Biofuel and Biorefineries», Polymers, vol. 13, n.o 2, Art. n.o 2, ene. 2021, doi: 10.3390/polym13020253.

R. G. Saratale et al., «A comprehensive overview and recent advances on polyhydroxyalkanoates (PHA) production using various organic waste streams», Bioresource technology, vol. 325, p. 124685, 2021.

S. Behera, M. Priyadarshanee, Vandana, y S. Das, «Polyhydroxyalkanoates, the bioplastics of microbial origin: Properties, biochemical synthesis, and their applications», Chemosphere, vol. 294, p. 133723, may 2022, doi: 10.1016/j.chemosphere.2022.133723.

V. Sharma, R. Sehgal, y R. Gupta, «Polyhydroxyalkanoate (PHA): Properties and Modifications», Polymer, vol. 212, p. 123161, ene. 2021, doi: 10.1016/j.polymer.2020.123161.

B. Bhattacharyya, H. T. Behera, A. Mojumdar, V. Raina, y L. Ray, «Polyhydroxyalkanoates: Resources, Demands and Sustainability», en Soil Microenvironment for Bioremediation and Polymer Production, John Wiley & Sons, Ltd, 2019, pp. 253-270. doi: 10.1002/9781119592129.ch14.

R. Dwivedi, R. Pandey, S. Kumar, y D. Mehrotra, «Poly hydroxyalkanoates (PHA): Role in bone scaffolds», Journal of Oral Biology and Craniofacial Research, vol. 10, n.o 1, pp. 389-392, ene. 2020, doi: 10.1016/j.jobcr.2019.10.004.

R. Mitra, T. Xu, H. Xiang, y J. Han, «Current developments on polyhydroxyalkanoates synthesis by using halophiles as a promising cell factory», Microbial Cell Factories, vol. 19, n.o 1, p. 86, abr. 2020, doi: 10.1186/s12934-020-01342-z.

P. Tyagi y A. Sharma, «Utilization of crude paper industry effluent for Polyhydroxyalkanoate (PHA) production», Environmental Technology & Innovation, vol. 23, p. 101692, ago. 2021, doi: 10.1016/j.eti.2021.101692.

C. Kourmentza et al., «Recent Advances and Challenges towards Sustainable Polyhydroxyalkanoate (PHA) Production», Bioengineering, vol. 4, n.o 2, Art. n.o 2, jun. 2017, doi: 10.3390/bioengineering4020055.

M. E. Grigore, R. M. Grigorescu, L. Iancu, R.-M. Ion, C. Zaharia, y E. R. Andrei, «Methods of synthesis, properties and biomedical applications of polyhydroxyalkanoates: a review», Journal of Biomaterials Science, Polymer Edition, vol. 30, n.o 9, pp. 695-712, jun. 2019, doi: 10.1080/09205063.2019.1605866.

S. Gopi, M. Kontopoulou, B. A. Ramsay, y J. A. Ramsay, «Manipulating the structure of medium-chain-length polyhydroxyalkanoate (MCL-PHA) to enhance thermal properties and crystallization kinetics», International Journal of Biological Macromolecules, vol. 119, pp. 1248-1255, nov. 2018, doi: 10.1016/j.ijbiomac.2018.08.016.

M. Eesaee, P. Ghassemi, D. D. Nguyen, S. Thomas, S. Elkoun, y P. Nguyen-Tri, «Morphology and crystallization behaviour of polyhydroxyalkanoates-based blends and composites: A review», Biochemical Engineering Journal, p. 108588, ago. 2022, doi: 10.1016/j.bej.2022.108588.

C. Sanhueza, F. Acevedo, S. Rocha, P. Villegas, M. Seeger, y R. Navia, «Polyhydroxyalkanoates as biomaterial for electrospun scaffolds», International Journal of Biological Macromolecules, vol. 124, pp. 102-110, mar. 2019, doi: 10.1016/j.ijbiomac.2018.11.068.

L. S. Dilkes-Hoffman, P. A. Lant, B. Laycock, y S. Pratt, «The rate of biodegradation of PHA bioplastics in the marine environment: A meta-study», Marine Pollution Bulletin, vol. 142, pp. 15-24, may 2019, doi: 10.1016/j.marpolbul.2019.03.020.

M. Fernandes, A. Salvador, M. M. Alves, y A. A. Vicente, «Factors affecting polyhydroxyalkanoates biodegradation in soil», Polymer Degradation and Stability, vol. 182, p. 109408, dic. 2020, doi: 10.1016/j.polymdegradstab.2020.109408.

N. n. n. Anitha y R. K. Srivastava, «Microbial Synthesis of Polyhydroxyalkanoates (PHAs) and Their Applications», en Environmental and Agricultural Microbiology, John Wiley & Sons, Ltd, 2021, pp. 151-181. doi: 10.1002/9781119525899.ch7.

M. Raberg, E. Volodina, K. Lin, y A. Steinbüchel, «Ralstonia eutropha H16 in progress: Applications beside PHAs and establishment as production platform by advanced genetic tools», Critical Reviews in Biotechnology, vol. 38, n.o 4, pp. 494-510, may 2018, doi: 10.1080/07388551.2017.1369933.

S. Chavan, B. Yadav, R. D. Tyagi, y P. Drogui, «A review on production of polyhydroxyalkanoate (PHA) biopolyesters by thermophilic microbes using waste feedstocks», Bioresource Technology, vol. 341, p. 125900, dic. 2021, doi: 10.1016/j.biortech.2021.125900.

M. Palencia, T. A. Lerma, V. Garcés, M. A. Mora, J. M. Martínez, y S. L. Palencia, «Chapter 6 - Polymer biosynthesis and biotransformations», en Eco-friendly Functional Polymers, M. Palencia, T. A. Lerma, V. Garcés, M. A. Mora, J. M. Martínez, y S. L. Palencia, Eds. Elsevier, 2021, pp. 89-104. doi: 10.1016/B978-0-12-821842-6.00029-4.

S. H. Mohammad y B. Bhukya, «Biotransformation of toxic lignin and aromatic compounds of lignocellulosic feedstock into eco-friendly biopolymers by Pseudomonas putida KT2440», Bioresource Technology, vol. 363, p. 128001, nov. 2022, doi: 10.1016/j.biortech.2022.128001.

X. Zhang, Y. Lin, Q. Wu, Y. Wang, y G.-Q. Chen, «Synthetic Biology and Genome-Editing Tools for Improving PHA Metabolic Engineering», Trends in Biotechnology, vol. 38, n.o 7, pp. 689-700, jul. 2020, doi: 10.1016/j.tibtech.2019.10.006.

F. Zhao et al., «Metabolic engineering of Pseudomonas mendocina NK-01 for enhanced production of medium-chain-length polyhydroxyalkanoates with enriched content of the dominant monomer», International Journal of Biological Macromolecules, vol. 154, pp. 1596-1605, jul. 2020, doi: 10.1016/j.ijbiomac.2019.11.044.

H.-K. Lee, S. Chang, W. Park, T.-J. Kim, S. Park, y H. Jeon, «Effective treatment of uranium-contaminated soil-washing effluent using precipitation/flocculation process for water reuse and solid waste disposal», Journal of Water Process Engineering, vol. 48, p. 102890, ago. 2022, doi: 10.1016/j.jwpe.2022.102890.

D. Kucera et al., «Characterization of the promising poly(3-hydroxybutyrate) producing halophilic bacterium Halomonas halophila», Bioresource Technology, vol. 256, pp. 552-556, may 2018, doi: 10.1016/j.biortech.2018.02.062.

I. Ihsanullah, A. Jamal, M. Ilyas, M. Zubair, G. Khan, y M. A. Atieh, «Bioremediation of dyes: Current status and prospects», Journal of Water Process Engineering, vol. 38, p. 101680, dic. 2020, doi: 10.1016/j.jwpe.2020.101680.

G. Gecim, G. Aydin, T. Tavsanoglu, E. Erkoc, y A. Kalemtas, «Review on extraction of polyhydroxyalkanoates and astaxanthin from food and beverage processing wastewater», Journal of Water Process Engineering, vol. 40, p. 101775, abr. 2021, doi: 10.1016/j.jwpe.2020.101775.

S. F. Corsino, M. Capodici, M. Torregrossa, y G. Viviani, «A comprehensive comparison between halophilic granular and flocculent sludge in withstanding short and long-term salinity fluctuations», Journal of Water Process Engineering, vol. 22, pp. 265-275, abr. 2018, doi: 10.1016/j.jwpe.2018.02.013.

W. T. Pecher et al., «Effects of road salt on microbial communities: Halophiles as biomarkers of road salt pollution», PLOS ONE, vol. 14, n.o 9, p. e0221355, sep. 2019, doi: 10.1371/journal.pone.0221355.

F. L. Martínez, «Caracterización genética y bioquímica de microorganismos relacionados al metabolismo del litio en aguas y suelos del NOA», mar. 2019, Accedido: 4 de octubre de 2022. [En línea]. Disponible en: https://ri.conicet.gov.ar/handle/11336/80288

A.-D.-P. Flores Vásquez, E.-I. Idrogo, y C. R. Carreño Farfán, «Rendimiento de polihidroxialcanoatos (PHA) en microorganismos halófilos aislados de salinas», Revista Peruana de Biología, vol. 25, n.o 2, pp. 153-160, abr. 2018, doi: 10.15381/rpb.v25i2.14249.

F. A. El-malek, A. Farag, S. Omar, y H. Khairy, «Polyhydroxyalkanoates (PHA) from Halomonas pacifica ASL10 and Halomonas salifodiane ASL11 isolated from Mariout salt lakes», International Journal of Biological Macromolecules, vol. 161, pp. 1318-1328, oct. 2020, doi: 10.1016/j.ijbiomac.2020.07.258.

M. T. Jamal y A. Pugazhendi, «Degradation of petroleum hydrocarbons and treatment of refinery wastewater under saline condition by a halophilic bacterial consortium enriched from marine environment (Red Sea), Jeddah, Saudi Arabia», 3 Biotech, vol. 8, n.o 6, p. 276, may 2018, doi: 10.1007/s13205-018-1296-x.

V. R. Ribeiro et al., «The use of microalgae-microbial fuel cells in wastewater bioremediation and bioelectricity generation», Journal of Water Process Engineering, vol. 48, p. 102882, ago. 2022, doi: 10.1016/j.jwpe.2022.102882.

P. R. Sreedevi, K. Suresh, y G. Jiang, «Bacterial bioremediation of heavy metals in wastewater: A review of processes and applications», Journal of Water Process Engineering, vol. 48, p. 102884, ago. 2022, doi: 10.1016/j.jwpe.2022.102884.

V. K. Nguyen, D. D. Nguyen, M.-G. Ha, y H. Y. Kang, «Potential of versatile bacteria isolated from activated sludge for the bioremediation of arsenic and antimony», Journal of Water Process Engineering, vol. 39, p. 101890, feb. 2021, doi: 10.1016/j.jwpe.2020.101890.

P. Bhatt, A. Sharma, E. R. Rene, A. J. Kumar, W. Zhang, y S. Chen, «Bioremediation of fipronil using Bacillus sp. FA3: Mechanism, kinetics and resource recovery potential from contaminated environments», Journal of Water Process Engineering, vol. 39, p. 101712, feb. 2021, doi: 10.1016/j.jwpe.2020.101712.

K. Priyanka, M. Umesh, B. Thazeem, y K. Preethi, «Polyhydroxyalkanoate biosynthesis and characterization from optimized medium utilizing distillery effluent using Bacillus endophyticus MTCC 9021: a statistical approach», Biocatalysis and Biotransformation, vol. 39, n.o 1, pp. 16-28, ene. 2021, doi: 10.1080/10242422.2020.1789112.

S. H. Kee et al., «A review on biorefining of palm oil and sugar cane agro-industrial residues by bacteria into commercially viable bioplastics and biosurfactants», Fuel, vol. 321, p. 124039, ago. 2022, doi: 10.1016/j.fuel.2022.124039.

S. Mohapatra et al., «Bacillus and biopolymer: Prospects and challenges», Biochemistry and Biophysics Reports, vol. 12, pp. 206-213, dic. 2017, doi: 10.1016/j.bbrep.2017.10.001.

E. M. da S. Montenegro, G. S. Delabary, M. A. C. da Silva, F. D. Andreote, y A. O. de S. Lima, «Molecular Diagnostic for Prospecting Polyhydroxyalkanoate-Producing Bacteria», Bioengineering (Basel), vol. 4, n.o 2, p. E52, may 2017, doi: 10.3390/bioengineering4020052.

A. J. Cal et al., «Production of polyhydroxyalkanoate copolymers containing 4-hydroxybutyrate in engineered Bacillus megaterium», International Journal of Biological Macromolecules, vol. 168, pp. 86-92, ene. 2021, doi: 10.1016/j.ijbiomac.2020.12.015.

A. Fakhar et al., «Heavy metal remediation and resistance mechanism of Aeromonas, Bacillus, and Pseudomonas: A review», Critical Reviews in Environmental Science and Technology, vol. 52, n.o 11, pp. 1868-1914, jun. 2022, doi: 10.1080/10643389.2020.1863112.

H. S. Al-Battashi et al., «Lignocellulosic biomass (LCB): a potential alternative biorefinery feedstock for polyhydroxyalkanoates production», Rev Environ Sci Biotechnol, vol. 18, n.o 1, pp. 183-205, mar. 2019, doi: 10.1007/s11157-018-09488-4.

J. Y. Boey, L. Mohamad, Y. S. Khok, G. S. Tay, y S. Baidurah, «A Review of the Applications and Biodegradation of Polyhydroxyalkanoates and Poly(lactic acid) and Its Composites», Polymers, vol. 13, n.o 10, Art. n.o 10, ene. 2021, doi: 10.3390/polym13101544.

N. Ungureanu, V. Vlăduț, y G. Voicu, «Water Scarcity and Wastewater Reuse in Crop Irrigation», Sustainability, vol. 12, n.o 21, Art. n.o 21, ene. 2020, doi: 10.3390/su12219055.

M. J. López-Serrano, J. F. Velasco-Muñoz, J. A. Aznar-Sánchez, y I. M. Román-Sánchez, «Sustainable Use of Wastewater in Agriculture: A Bibliometric Analysis of Worldwide Research», Sustainability, vol. 12, n.o 21, Art. n.o 21, ene. 2020, doi: 10.3390/su12218948.

G. Crini y E. Lichtfouse, «Advantages and disadvantages of techniques used for wastewater treatment», Environ Chem Lett, vol. 17, n.o 1, pp. 145-155, mar. 2019, doi: 10.1007/s10311-018-0785-9.

A. Gupta, M. Kumar, y I. S. Thakur, «Analysis and optimization of process parameters for production of polyhydroxyalkanoates along with wastewater treatment by Serratia sp. ISTVKR1», Bioresource Technology, vol. 242, pp. 55-59, oct. 2017, doi: 10.1016/j.biortech.2017.03.110.

S. Palmieri et al., «Effects of different pre-treatments on the properties of polyhydroxyalkanoates extracted from sidestreams of a municipal wastewater treatment plant», Science of The Total Environment, vol. 801, p. 149633, 2021.

M. Kumar et al., «Bacterial polyhydroxyalkanoates: Opportunities, challenges, and prospects», Journal of Cleaner Production, vol. 263, p. 121500, 2020.

P.-S. Mok, J.-A. Chuah, N. Najimudin, P.-W.-Y. Liew, B.-C. Jong, y K. Sudesh, «In Vivo Characterization and Application of the PHA Synthase from Azotobacter vinelandii for the Biosynthesis of Polyhydroxyalkanoate Containing 4-Hydroxybutyrate», Polymers (Basel), vol. 13, n.o 10, p. 1576, may 2021, doi: 10.3390/polym13101576.

D. Meng et al., «Production of polyhydroxyalkanoates from propylene oxide saponification wastewater residual sludge using volatile fatty acids and bacterial community succession», Bioresource Technology, vol. 329, p. 124912, 2021.

A. D. Tripathi et al., «Production of polyhydroxyalkanoates using dairy processing waste–a review», Bioresource Technology, vol. 326, p. 124735, 2021.

G. Mannina, D. Presti, G. Montiel-Jarillo, J. Carrera, y M. E. Suárez-Ojeda, «Recovery of polyhydroxyalkanoates (PHAs) from wastewater: A review», Bioresource technology, vol. 297, p. 122478, 2020.

G. Pagliano, P. Galletti, C. Samorì, A. Zaghini, y C. Torri, «Recovery of Polyhydroxyalkanoates From Single and Mixed Microbial Cultures: A Review», Frontiers in Bioengineering and Biotechnology, vol. 9, 2021, Accedido: 6 de octubre de 2022. [En línea]. Disponible en: https://www.frontiersin.org/articles/10.3389/fbioe.2021.624021