A deep learning approach for epilepsy seizure detection using EEG signals
Main Article Content
Abstract
Electroencephalogram (EEG) is an effective non-invasive way to detect sudden changes in neural brain activity, which generally occurs due to excessive electric discharge in the brain cells. EEG signals could be helpful in imminent seizure prediction if the machine could detect changes in EEG patterns. In this study, we have proposed a one-dimensional Convolutional Neural network (CNN) for the automatic detection of epilepsy seizures. The automated process might be convenient in the situations where a neurologist is unavailable and also help the neurologists in proper analysis of EEG signals and case diagnosis. We have used two publicly available EEG datasets, which were collected from the two African countries, Guinea-Bissau and Nigeria. The datasets contain EEG signals of 318 subjects. We have trained and verify the performance of our model by testing it on both the datasets and obtained the highest accuracy of 82.818%.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación y pueda editarlo, reproducirlo, distribuirlo, exhibirlo y comunicarlo en el país y en el extranjero mediante medios impresos y electrónicos. Asimismo, asumen el compromiso sobre cualquier litigio o reclamación relacionada con derechos de propiedad intelectual, exonerando de responsabilidad a la Editorial Tecnológica de Costa Rica. Además, se establece que los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
References
World Health Organization Fact Sheet on Epilepsy https://www.who.int/news-room/fact-sheets/detail/epilepsy, latest accessed 2020/07/15.
Orosco, L., Correa, A. G., & Laciar, E. (2013). A survey of performance and techniques for automatic epilepsy detection. Journal of Medical and Biological Engineering, 33(6), 526-537.
Juarez-Guerra, E., Alarcon-Aquino, V., & Gomez-Gil, P. (2015). Epilepsy seizure detection in EEG signals using wavelet transforms and neural networks. In New trends in networking, computing, E-learning, systems sciences, and engineering (pp. 261-269). Springer, Cham.
Li, M., Chen, W., & Zhang, T. (2016). Automatic epilepsy detection using wavelet-based nonlinear analysis and optimized SVM. Bio cybernetics and biomedical engineering, 36(4), 708-718.
Gupta, S., Bagga, S., Maheshkar, V., & Bhatia, M. P. S. (2020, January). Detection of Epileptic Seizures using EEG Signals. In 2020 International Conference on Artificial Intelligence and Signal Processing (AISP) (pp. 1-5). IEEE
Vincent van Hees, & Wim Otte. (2018). EEG data collected with Emotiv device in people with epilepsy and controls in Guinea-Bissau and Nigeria (Version 1.0) [Data set]. Zenodo. http://doi.org/10.5281/zenodo.1252141, latest accessed 2020/07/15
Echallier, J. F., F. Perrin, and J. Pernier. “Computer-assisted placement of electrodes on the human head.” Electroencephalography and clinical neurophysiology 82.2 (1992): 160-163.
V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann machines,” Haifa, 2010, pp. 807–814. [Online]. Available: https://dl.acm.org/citation.cfm, latest accessed 2020/07/15.
J. Turian, J. Bergstra, and Y. Bengio, “Quadratic features and deep architectures for chunking,” in Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics,, vol. Companion Volume:, 2009, pp. 245–248. [Online]. Available: https://dl.acm.org/citation.cfm
Y. A. LeCun, L. Bottou, G. B. Orr, K.-R. Muller, Efficient backprop, ¨in: Neural networks: Tricks of the trade, Springer, 2012, pp. 9–48.
International Work Conference on Bioinspired Intelligence
D. Lu and J. Triesch, “Residual deep convolutional neural network for eeg signal classification in epilepsy,” arXiv preprint arXiv:1903.08100, 2019.
Baghel, N., Singh, D., Dutta, M. K., Burget, R., & Myska, V. (2020, July). Truth Identification from EEG Signal by using Convolution neural network: Lie Detection. In 2020 43rd International Conference on Telecommunications and Signal Processing (TSP) (pp. 550-553). IEEE