GPU based approach for fast generation of robot capability representations
Main Article Content
Abstract
Capability maps are an important tool for enabling robots to understand their bodies by providing a way of representing the dexterity of their arms. They are usually treated as static data structures be- cause of how computationally intensive they are to generate. We present a method for generating capability maps taking advantage of the parallelization that modern GPUs offer such that these maps are generated approximately 50 times faster than previous implementations. This system could be used in situations were the robot has to generate this maps fast, for example when using unknown tools.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación y pueda editarlo, reproducirlo, distribuirlo, exhibirlo y comunicarlo en el país y en el extranjero mediante medios impresos y electrónicos. Asimismo, asumen el compromiso sobre cualquier litigio o reclamación relacionada con derechos de propiedad intelectual, exonerando de responsabilidad a la Editorial Tecnológica de Costa Rica. Además, se establece que los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
References
Chaves-Arbaiza, I., García-Vaglio, D., Ruiz-Ugalde, F.: Smart Placement of a Two- Arm Assembly for An Everyday Object Manipulation Humanoid Robot Based on Capability Maps. In: 2018 IEEE International Work Conference on Bioinspired Intelligence (IWOBI), pp. 1–9 (2018). DOI 10.1109/IWOBI.2018.8464192
Forstenhäusler, M., Wetner, T., Dietmayer, K.: Optimized Mobile Robot Posi- tioning for better Utilization of the Workspace of an attached Manipulator. In: 2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 2074–2079 (2020). DOI 10.1109/AIM43001.2020.9158922. ISSN: 2159-6255
Jauer, P., Kuhlemann, I., Ernst, F., Schweikard, A.: GPU-based real-time 3D workspace generation of arbitrary serial manipulators. In: 2016 2nd International Conference on Control, Automation and Robotics (ICCAR), pp. 56–61 (2016). DOI 10.1109/ICCAR.2016.7486698
Klein, C.A., Blaho, B.E.: Dexterity Measures for the Design and Control of Kinematically Redundant Manipulators. The International Journal of Robotics Research 6(2), 72–83 (1987). DOI 10.1177/027836498700600206. URL http://journals.sagepub.com/doi/10.1177/027836498700600206
Liu, Q., Chen, C.Y., Wang, C., Wang, W.: Common workspace analysis for a dual-arm robot based on reachability. In: 2017 IEEE International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM), pp. 797–802 (2017). DOI 10.1109/ICCIS. 2017.8274881. ISSN: 2326-8239
Makhal, A., Goins, A.K.: Reuleaux: Robot Base Placement by Reachability Analy- sis. In: 2018 Second IEEE International Conference on Robotic Computing (IRC), pp. 137–142 (2018). DOI 10.1109/IRC.2018.00028
Morgan, A.S., Hang, K., Bircher, W.G., Alladkani, F.M., Gandhi, A., Calli, B., Dollar, A.M.: Benchmarking Cluttered Robot Pick-and-Place Manipulation With the Box and Blocks Test. IEEE Robotics and Automation Letters 5(2), 454–461 (2020). DOI 10.1109/LRA.2019.2961053. Conference Name: IEEE Robotics and Automation Letters
Porges, O., Lampariello, R., Artigas, J., Wedler, A., Borst, C., Roa, M.A.: Reach- ability and dexterity: Analysis and applications for space robotics. In: Proceedings of the Workshop on Advanced Space Technologies for Robotics and Automation (ASTRA) (2015)
Porges, O., Stouraitis, T., Borst, C., Roa, M.A.: Reachability and Capability Analysis for Manipulation Tasks. In: M.A. Armada, A. Sanfeliu, M. Ferre (eds.) ROBOT2013: First Iberian Robotics Conference, Advances in Intelligent Systems and Computing, pp. 703–718. Springer International Publishing, Cham (2014). DOI 10.1007/978-3-319-03653-3_50
Ruiz, E., Mayol-Cuevas, W.: Where can i do this? Geometric Affordances from a Single Example with the Interaction Tensor. In: 2018 IEEE International Confer- ence on Robotics and Automation (ICRA), pp. 2192– 2199. IEEE, Brisbane, QLD (2018). DOI 10.1109/ICRA.2018.8462835. URL https://ieeexplore.ieee.org/ document/8462835/
Zacharias, F., Borst, C., Hirzinger, G.: Capturing robot workspace structure: repre- senting robot capabilities. In: 2007 IEEE/RSJ International Conference on Intelli- gent Robots and Systems, pp. 3229–3236 (2007). DOI 10.1109/IROS.2007.4399105. ISSN: 2153-0866
Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2, 27:1–27:27 (2011). Software available at http://www.csie.ntu.edu.tw/ cjlin/libsvm
Anguita, D., Ghio, A., Ridella, S., Sterpi, D.: K-fold cross validation for error rate estimate in support vector machines. In: R. Stahlbock, S.F. Crone, S. Lessmann (eds.) Proceedings of the 2009 International Conference on Data Mining, DMIN 2009, July 13-16, 2009, Las Vegas, USA, pp. 291–297. CSREA Press (2009)