Adsorption and dosage of Ca in soils of Buenos Aires, Argentina
Main Article Content
Abstract
Adsorption isotherms have been used to evaluate nutrients in soil. The soils of the Argentinean Pampas have been considered well-endowed with bases, although there is evidence of their decrease caused by agricultural activities without replacement of nutrients such as calcium (Ca). The objective was to adjust adsorption isotherms and dosage equations of Ca in agroproductive soils of Buenos Aires. Bellocq, Inchausti and Belgrano soils were weighed and solutions with different Ca concentrations were added. The equilibrium concentration was determined after stabilization and the results were adjusted according to the Langmuir, Freundlich, Van Huay and Temkin isotherms and equations of dosage. The Van Huay isotherm was able to predict with high degrees of adjustment in the three sites (R2>0.98) and only the Freundlich equation was adjusted to Bellocq. The dosage equations were adjusted in all the soils, in a first segment with quadratic equations and in a second segment with linear equations. The Belgrano soil differed from the other sites in the parameters of the Van Huay equation, suggesting a greater affinity with the colloids and a greater reserve of the nutrient in the short term, associated with its higher content of CO, CEC and possibly, P. The results found could be compared with studies carried out in K and/or in tropical soils. These studies suggest the possibility of using adsorption isotherms and dosage equations as tools for decision-making in fertilization in soils of Buenos Aires.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación y pueda editarlo, reproducirlo, distribuirlo, exhibirlo y comunicarlo en el país y en el extranjero mediante medios impresos y electrónicos. Asimismo, asumen el compromiso sobre cualquier litigio o reclamación relacionada con derechos de propiedad intelectual, exonerando de responsabilidad a la Editorial Tecnológica de Costa Rica. Además, se establece que los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
References
G. Limousin, J. P. Gaudet, L. Charlet, S. Szenknect, V. Barthès, and M. Krimissa, “Sorption isotherms: A review on physical bases, modeling and measurement,” Applied Geochemistry, vol. 22, no. 2, pp. 249–275, 2007, doi: 10.1016/j.apgeochem.2006.09.010.
S. Bedrossian and B. Singh, “Potassium adsorption characteristics and potassium forms in some New South Wales soils in relation to early senescence in cotton,” Australian Journal of Soil Research, vol. 42, no. 7, pp. 747–753, 2004, doi: 10.1071/SR03143.
A. A. Onana, A. D. Mvondo Ze, B. P. Yerima, and V. Agoume, “Comparison of different phosphorous adsorption models in acid forest soils of Bityili (Southern – Cameroon) and their relationship with soil properties,” Int J Biol Chem Sci, vol. 10, no. 2, p. 820, Sep. 2016, doi: 10.4314/ijbcs.v10i2.30.
M. McBride, “Chemisorption and precipitation reactions,” in Handbook of Soil Sciencie, M. Sumner, Ed. London, UK: CRC Press, 2000.
O. Kenyanya, “Studies on Potassium Requirements por Maize in Nyamira Country,” Degree of Master of Science Thesis, Kenyatta University, Kenya, 2015.
A. Shaviv, S. v Mattigod, P. F. Pratt, and H. Joseph, “Potassium Exchange in Five Southern California Soils with High Potassium Fixation Capacity,” Soil Science Society of America Journal , vol. 49, no. 5, pp. 1128–1133, 1985.
A. Samadi, “Potassium Exchange Isotherms as a Plant Availability Index in Selected Calcareous Soils of Western Azarbaijan Province, Iran,” Turk J Agric For, vol. 30, pp. 213–222, 2006.
N. Farheen et al., “Modeling the potassium requirements of potato crop for yield and quality optimization,” Asian J Agri & Biol, vol. 6, no. 2, pp. 169–180, 2018, [Online]. Available: https://www.researchgate.net/publication/326413345
R. Pannu, Y. Singh, and B. Singh, “Effect of long-term application of organic materials and inorganic N fertilizers on potassium fixation and release characteristics of soil under rice-wheat cropping system,” Journal of Potassium Resource , vol. 19, pp. 1–10, 2003.
M. Kassa, W. Haile, and F. Kebede, “Evaluation of Adsorption Isotherm Models for Potassium Adsorption under Different Soil Types in Wolaita of Southern Ethiopia,” Commun Soil Sci Plant Anal, vol. 50, no. 4, pp. 388–401, Feb. 2019, doi: 10.1080/00103624.2018.1563097.
A. Hannan, “Evaluation of sorption isotherm based soil solution potassium concentration levels for maximizing crop yields,” PhD Thesis, University of Agriculture, Faisalabad, Pakistan, 2008.
P. White, “The pathways of calcium movement to xylem,” J Exp Bot, vol. 52, pp. 891–899, 2001.
M. Vázquez and A. Pagani, “Calcio y magnesio. Manejo de fertilización y enmiendas,” in Fertilizad de suelos y fertilización de cultivos, E. H. Echeverría and F. García, Eds. Buenos Aires: INTA, 2015, pp. 317–350.
E. Kirkby and D. Pilbeam, “Calcium as a plant nutrient,” Plant Cell Environ, vol. 7, no. 6, pp. 397–405, Aug. 1984, doi: 10.1111/j.1365-3040.1984.tb01429.x.
A. Kumar, U. M. Singh, M. Manohar, and V. S. Gaur, “Calcium transport from source to sink: understanding the mechanism(s) of acquisition, translocation, and accumulation for crop biofortification,” Acta Physiol Plant, vol. 37, no. 1, p. 1722, Jan. 2015, doi: 10.1007/s11738-014-1722-6.
V. N. Chaganti and S. W. Culman, “Historical Perspective of Soil Balancing Theory and Identifying Knowledge Gaps: A Review,” Crop, Forage & Turfgrass Management, vol. 3, no. 1, p. cftm2016.10.0072, Dec. 2017, doi: 10.2134/cftm2016.10.0072.
R. Fuentes Flores, “Comportamiento de la capacidad de intercambio catiónico en algunos suelos ácidos de origen volcánico,” Tesis de Maestría , Instituto Interamericano de ciencias agrícolas de la OEA, Costa RIca, 1971.
S. Navarro Blaya and G. Navarro García, Química Agrícola, Segunda Edición. 2003.
G. H. Bolt, M. F. de Boodt, M. H. Hayes, M. B. McBride, and E. B. de Strooper, Interactions at the Soil Colloid: Soil Solution Interface, Primera Edicion. Netherlands, 2013.
V. Snakin, A. Prisyazhnaya, and E. Kovács-Láng, Soil Liquid Phase Composition. Amsterdam: Elsevier, 2001.
D. Jaramillo, “Parte 4. Las propiedades químicas del suelo,” in Introducción a la Ciencia del Suelo, D. Jaramillo, Ed. Medillín, Colombia, 2002, pp. 295–375.
X. Zhang and A. Zhao, “Surface charge,” in Chemistry of Variable Charge Soils, T. Yu, Ed. New York: Oxford University Press, 1997, pp. 17–63.
H. Fassbender and E. Bornemisza, Química de suelos con énfasis en América Latina, Segunda Edición. San José, Costa Rica: Servicio Editorial IICA, 1987.
E. Marcano-Martinez and M. B. McBride, “Calcium and Sulfate Retention by Two Oxisols of the Brazilian Cerrado,” Soil Science Society of America Journal, vol. 53, no. 1, pp. 63–69, Jan. 1989, doi: 10.2136/sssaj1989.03615995005300010012x.
H. Sainz Rozas, M. Eyherabide, G. Larrea, N. Martínez Cuesta, and H. Angelini, “Relevamiento y determinación de propiedades químicas en suelos de aptitud agrícola de la región pampeana,” Actas Simposio Fertilidad. FERTILIZAR Asociación Civil, Rosario, pp. 141–158, 2019.
H. Fontanetto et al., “Fertilización cálcica en soja en la zona central de Santa Fe. Información Técnica en Cultivos de Verano. Campaña 2011,” Publicación Miscelánea INTA N° 121. INTA, Rafaela, Santa Fe, pp. 94–99, 2011.
P. A. Barbieri, H. E. Echeverría, H. R. Sainz Rozas, and J. P. Martínez, “Soybean and wheat response to lime in no-till Argentinean mollisols,” Soil Tillage Res, vol. 152, pp. 29–38, Sep. 2015, doi: 10.1016/j.still.2015.03.013.
E. Ciarlo, D. Cosentino, M. García, and F. González, “Analisis de participacion de laboratorios de suelos en el programa PROINSA,” Acta de conferencias, mesas panel, trabajos completos, comunicaciones y resúmenes. XXVI Congreso Argentino de la Ciencia del Suelo. AACS, Tucumán, pp. 45–49, 2018.
P. Beckett, “Studies on soil potassium II. The ‘immediate’ Q/I relations of labile potassium in the soil,” Journal of Soil Science, vol. 15, no. 1, pp. 9–23, 1964.
Google, “Google Maps,” 2022. https://www.google.com.ar/maps/preview (accessed Oct. 20, 2022).
Soil Survey Staff, Keys to Soil Taxonomy, 12th ed. Washington, DC, Estados Unidos: USDA - Natural Resources Conservation Service, 2014.
INTA, “Visor GeoINTA. Recuperado el 29 de 8 de 2016.” 2016. [Online]. Available: de
INTA, “Cartas de suelo de la República Argentina. Provincia de Buenos Aires,” Instituto de Suelos INTA, 2002. https://anterior.inta.gov.ar/suelos/cartas/ (accessed Jul. 28, 2022).
SAMLA, Sistema de Apoyo Metodológico a los Laboratorios de Análisis de Suelos. Buenos Aires: SAGyP, 2004.
I. Langmuir, “The constitution and fundamental properties of solids and liquids,” J. Am. Chem. Soc., vol. 38, no. 11, pp. 2221–2295, 1916.
K. Y. Foo and B. H. Hameed, “Insights into the modeling of adsorption isotherm systems,” Chemical Engineering Journal, vol. 156, no. 1. pp. 2–10, Jan. 01, 2010. doi: 10.1016/j.cej.2009.09.013.
H. Freundlich, “Over the adsorption in solution,” J. Phys. Chem, vol. 57, pp. 385–471, 1906.
H. Pagel and H. van Huay, “Wichtige Parameter der Phosphatsorptionkurven einiger BOden der Tropen und Subtropen und ihre zeitliche Veranderung durch P-Dtingung,” Arch. Acker- u. Pflanzenbau u. Bodenkd , vol. 20, pp. 765–778, 1976.
H. Abbas, S. Soltana, M. Mahmoud, and M. Nasef, “Sorption-desorption reactions for Zinc and Cupper by some newly reclaimed soils in Egypt,” Ann Agric Sci, vol. 34, no. 1, pp. 407–427, 1996, [Online]. Available: https://www.researchgate.net/publication/305278830
M. Tempkin and V. Pyzhev, “Kinetics of ammonia synthesis on promoted iron catalyst,” Acta Phys. Chim. USSR , vol. 12, pp. 327–356, 1940.
J. di Rienzo, F. Casanoves, M. Balzarini, L. Gonzalez, M. Tablada, and C. Robledo, “InfoStat,” Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina, 2016. http://www.infostat.com.ar (accessed Jun. 12, 2022).
R. Zapata Hernandez, Química de la Acidez, 1ra ed. Medillín, Colombia: Caragraphis, 2004.
N. Arrigo and M. Conti, “Importancia de los mecanismos de intercepción radical, flujo masal y difusión de Ca, Mg, K y Na en plantas de maíz en suelos pampeanos,” Revista de la Facultad de Agronomía, vol. 6, no. 3, pp. 183–188, 1985.
W. A. Narváez Ortiz, “Desarrollo de Modelos Matemáticos para el Estudio de la Concentración de Elementos en la Solución del Suelo,” Tesis de Doctorado, Universidad Autónoma Agraria Antonio Narro, Saltillo, Coahuila, 2017.