Review of materials characterization techniques to study corrosion in biodiesel engines

Main Article Content

Rebeca Corrales-Brenes
José Andrés Quesada-Quirós
Jean Carlo Guerrero-Piña
Kevin Hidalgo-Solano
Claudia C. Villareal

Abstract

Biodiesel is a biodegradable alternative that makes it possible to replace part of the consumption of petroleum diesel. This article analyzes the corrosive effect of biodiesel on metallic materials in engines using characterization techniques, including Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, scanning electron microscopy (SEM) and X-ray diffraction (XRD). Through a study of the state of the art of these techniques, recommendations are gathered to evaluate the performance of metals in engines that run on biodiesel. In addition, it covers the corrosion mechanisms to which engine components are subjected to improve their design processes. The study finally focuses on pitting corrosion to identify viable strategies to mitigate its effect on this type of engines and improve their performance characteristics, for which materials science is demonstrated as a fundamental tool. The main result of this review was the identification of pitting corrosion as the main failure mechanism in biodiesel engines.

Article Details

How to Cite
Corrales-Brenes, R., Quesada-Quirós, J. A., Guerrero-Piña, J. C., Hidalgo-Solano, K., & C. Villareal, C. (2022). Review of materials characterization techniques to study corrosion in biodiesel engines. Tecnología En Marcha Journal, 35(7), Pág. 106–118. https://doi.org/10.18845/tm.v35i7.6342
Section
Artículo científico

References

Proyecciones de la demanda eléctrica de Costa Rica 2018 – 2040. (2018).

De Lucas, A. Biomasa, biocombustibles y sostenibilidad. (n.d.)., pp. 75-81.

Press, A. I. N. Progress in bioethanol processing. 34, 551–573. https://doi.org/10.1016/j.pecs.2007.11.001 (2008).

Fischer, C. R., Klein-Marcuschamer, D., & Stephanopoulos, G. (2008). Selection and optimization of microbial hosts for biofuels production. Metabolic Engineering, 10(6), 295–304. https://doi.org/10.1016/j.ymben.2008.06.009

Chisti, Y. (2008). Biodiesel from microalgae beats bioethanol. Trends in Biotechnology, 26(3), 126–131. https://doi.org/10.1016/j.tibtech.2007.12.002

Timilsina, G. R., Mevel, S., & Asia, S. (2013). Biofuels and Climate Change Mitigation : A CGE Analysis Incorporating Land-Use Change. 1–19. https://doi.org/10.1007/s10640-012-9609-8

Manwell, J. F. (2004). Hybrid Energy Systems. In Encyclopedia of Energy (pp. 215–229). Elsevier. https://doi.org/10.1016/b0-12-176480-x/00360-0

Amaro, H. M., Guedes, A. C., & Malcata, F. X. Advances and perspectives in using microalgae to produce biodiesel. Applied Energy, 88(10), 3402–3410. https://doi.org/10.1016/j.apenergy.2010.12.014. (2011).

Portada de la CMNUCC. (n.d.).

Mofijur, M., Rasul, M. G., Hyde, J., Azad, A. K., Mamat, R., & Bhuiya, M. M. K. Role of biofuel and their binary (diesel-biodiesel) and ternary (ethanol-biodiesel-diesel) blends on internal combustion engines emission reduction. In Renewable and Sustainable Energy Reviews (Vol. 53, pp. 265–278). Elsevier Ltd. https://doi.org/10.1016/j.rser.2015.08.046 (2016).

Tabatabaei, M., Aghbashlo, M., Dehhaghi, M., Panahi, H. K. S., Mollahosseini, A., Hosseini, M., & Soufiyan, M. M. Reactor technologies for biodiesel production and processing: A review. In Progress in Energy and Combustion Science (Vol. 74, pp. 239–303). Elsevier Ltd. https://doi.org/10.1016/j.pecs.2019.06.001. (2019).

Gude, V. G., Patil, P., Martinez-guerra, E., & Deng, S. Microwave energy potential for biodiesel production. c, 1–31. (2013).

Anderson, L. G. Effects of Biodiesel Fuel Use on Vehicle Emissions Effects of Biodiesel Fuels Use on Vehicle Emissions. March. https://doi.org/10.3384/ecp110573645.(2015).

Ivonne, L., Carlos, J., Biodiesel, P. D. E., Una, Y. B., Sustentable, A., & Crisis, A. L. A. (2012). Ra Ximhai.

Emisiones, E. F. D. E. AGOTAMIENTO DE LOS COMBUSTIBLES FÓSILES Y EMISIONES DE CO 2 : ALGUNOS POSIBLES ESCENARIOS FUTUROS. (2010).

Universitaria, R. D. (2007). Efecto invernadero , calentamiento global y cambio climático : una perspectiva desde las ciencias de la tierra Efecto invernadero calentamiento global y cambio climático.

Programa, X. I. I., & Cient, C. Aprovechamiento de la biomasa como fuente de energía alternativa a los combustibles fósiles. 104, 331–345. (2010).

Norte, U., Agudelo, S., John, R., Meneses, G., Bayer, P., Fernando, J., Una, B., Norte, U., S, J. R. A., Benjumea, P., Gómez, E., Fernando, J., & Bayer, P. Una revisión del desempeño mecánico y ambiental. (2003).

Anderson, L. G. Effects of Biodiesel Fuel Use on Vehicle Emissions Effects of Biodiesel Fuels Use on Vehicle Emissions. March. https://doi.org/10.3384/ecp110573645. (2015).

Canakci, M., Ozsezen, A. N., Arcaklioglu, E., & Erdil, A. (2009). Prediction of performance and exhaust emissions of a diesel engine fueled with biodiesel produced from waste frying palm oil. Expert Systems with Applications, 36(5), 9268–9280. https://doi.org/10.1016/j.eswa.2008.12.005.

Porcayo-calderon, J. Corrosión y preservación de la infraestructura industrial Editores : (Issue July). https://doi.org/10.3926/oms.157. (2013).

ASTM International., Standard Specification for Gray Iron Casting, vol. A48/A48M − 00, USA.: American Society for Testing and Materials, (2008).

José, D., Oscar, E., & Jhon, J. Pruebas de corrosión cíclica de fundiciones de hierro gris en diferentes Biodiesel (2016).

Fazal, M. A., Haseeb, A. S. M. A., & Masjuki, H. H. Corrosion mechanism of copper in palm biodiesel. Corrosion Science, 67, 50–59. https://doi.org/10.1016/j.corsci.2012.10.006. (2013).

Haseeb, A. S. M. A., Masjuki, H. H., Ann, L. J., & Fazal, M. A. Corrosion characteristics of copper and leaded bronze in palm biodiesel. Fuel Processing Technology, 91(3), 329–334. https://doi.org/10.1016/j.fuproc.2009.11.004. (2010).

Sebastian, A., Julio, A., Becerra, H., Lorenzo, D., & Cristhian, H. (n.d.). Sistemas de inyección electrónica.

Caldera, M., Martinez, R. A., Stocchi, A., Mecánica, D. D. I., Ingeniería, F. De, Nacional, U., Mar, D., Justo, A. J. B., & Plata, M. DE LOS COMPONENTES DEL MOTOR. 67–78.(2016).

Berman, P., Nizri, S., & Wiesman, Z. (2011). Castor oil biodiesel and its blends as alternative fuel. Biomass and Bioenergy, 35(7), 2861–2866. https://doi.org/10.1016/j.biombioe.2011.03.024

Coy, J. L., Jurado, J. V., Acevedo, E. B., & Velásquez, S. H. (n.d.). ANÁLISIS DEL SECTOR BIODIÉSEL EN COLOMBIA Y SU CADENA.

Huang, D., Zhou, H., & Lin, L. Energy Procedia Biodiesel : an Alternative to Conventional Fuel. 16, 1874–1885. https://doi.org/10.1016/j.egypro.2012.01.287 (2012).

Homer, I. . Motores y Biocombustibles. January 2006. (2014)

Avellaneda Vargas, F. A. (2010). Producción y caracterización de biodiesel de palma y de aceite reclicado mediante un proceso batch y un proceso continuo con un reactor helicoidal. Universitat Rovira i Virgili.

Mendoza-l, R., Garc, O., Cortines, A. R., Verde, C., & Ayala, L. C. Fabricación de Biodiesel para uso en Maquinaria Agrícola. 3(1), 571–576. (2011).

Gómez García, J. (2009). Análisis de la degradación de recubrimientos de barrera térmica mediante espectroscopía de impedancia electroquímica. https://eciencia.urjc.es/handle/10115/5147

Callister, W. D., & Rethwisch, D. G. (2018). Materials science and engineering: an introduction (Vol. 9). Wiley New York.

Singh, B., Korstad, J., & Sharma, Y. C. A critical review on corrosion of compression ignition (CI) engine parts by biodiesel and biodiesel blends and its inhibition. In Renewable and Sustainable Energy Reviews (Vol. 16, Issue 5, pp. 3401–3408). Pergamon. https://doi.org/10.1016/j.rser.2012.02.042. (2012)

Haseeb, A. S. M. A., Fazal, M. A., Jahirul, M. I., & Masjuki, H. H. Compatibility of automotive materials in biodiesel: A review. In Fuel (Vol. 90, Issue 3, pp. 922–931). Elsevier. https://doi.org/10.1016/j.fuel.2010.10.042. (2011).

Revie, R. W. (2011). Uhlig’s corrosion handbook (Vol. 51). John Wiley & Sons.

Sorate, K. A., & Bhale, P. V. (2018). Corrosion Behavior of Automotive Materials with Biodiesel: A Different Approach. SAE International Journal of Fuels and Lubricants, 11(2), 147–162.

Nguyen, X. P., & Vu, H. N. (2019). Corrosion of The Metal Parts of Diesel Engines In Biodiesel-Based Fuels. International Journal of Renewable Energy Development, 8(2).

Ambrozin, A. R. P., Kuri, S. E., & Monteiro, M. R. (2009). Metallic corrosion related to mineral fuels and biofuels utilization. Química Nova, 32(7), 1910–1916. https://doi.org/10.1590/S0100-40422009000700037

C, M. F. C., Castillo, L., A, V. B., M, J. L. C., & C, J. J. L. EN LA ETAPA FINAL DE PRODUCCIÓN BIODIESEL PURIFICATION ASSESSMENT AT ITS FINAL PRODUCTION STAGE. 76(1), 25–33. (2010).

Rocabruno-Valdés, C. I., González-Rodriguez, J. G., Díaz-Blanco, Y., Juantorena, A. U., Muñoz-Ledo, J. A., El-Hamzaoui, Y., & Hernández, J. A. Corrosion rate prediction for metals in biodiesel using artificial neural networks. Renewable Energy, 140, 592–601. https://doi.org/10.1016/j.renene.2019.03.065. (2019).

Tester, C. C., Products, P., Titration, I., & Pressure, R. Standard Specification for Biodiesel Fuel Blend Stock ( B100 ) for Middle Distillate. 1–11. https://doi.org/10.1520/D6751-20A.2. (2021).

Norouzi, S., Eslami, F., Wyszynski, M. L., & Tsolakis, A. (2012). Corrosion effects of RME in blends with ULSD on aluminium and copper. Fuel Processing Technology, 104, 204–210. https://doi.org/10.1016/j.fuproc.2012.05.016

Almeida, E. S., Monteiro, M. A. N. A., Montes, R. H. O., Mosquetta, R., Coelho, N. M. M., Richter, E. M., & Muñoz, R. A. A. (2010). Direct Determination of Copper in Biodiesel Using Stripping Analysis. Electroanalysis, 22(16), 1846–1850. https://doi.org/10.1002/elan.201000162

Apraiz J., Fundiciones., 6ta ed., España: Dossat Editorial, (1988)

ASTM International., Standard Specification for Gray Iron Casting, vol. A48/A48M − 03, USA.: American Society for Testing and Materials, (2008).

Castro, J. D., Piamba, O. E., & Olaya, J. J. Pruebas de corrosión cíclica de fundiciones de hierro gris en diferentes Biodiesel. 5(5), 423–429. (2016).

Askeland, D. R., Phulé, P. P., Wright, W. J., & Bhattacharya, D. K. The science and engineering of materials. (2003).

Kalpakjian, S., & Schmid, S. R. Manufactura, ingeniería y tecnología. Pearson educación. (2002).

Roman, A. S., Mendez, C. M., & Ares, A. E. (n.d.). Corrosión de un acero inoxidable austenítico en biodiesel Corrosion of an austenitic stainless steel in biodiesel. 26, 128–134.

Smith, W. F., Hashemi, J., & Presuel-Moreno, F. (2006). Foundations of materials science and engineering. Mcgraw-Hill Publishing.

Maldonado Flores, J. L. (1996). Aceros y sus aplicaciones. Universidad Autónoma de Nuevo León.

Baena, L. M. (2020). Evaluación de la corrosión de acero al carbono ASTM 1005 y cobre expuestos a biodiesel de jatropha. October.

Jaramillo, J. D., Sanchez, L. E. Ll., & Amaris, H. V. (2006). Estructura cristalina del cobre,propiedades macroscopicas mecanicas y de procesamiento. Ciencia e Ingenieria Neogranadina, 16(2), 9. http://www.redalyc.org/pdf/911/91116210.pdf

Esmeralda Gómez, A. G. (2018). Desarrollo de aleaciones aluminio cobre de alto desempeño para la industria automotriz. Universidad Autónoma de Nuevo León.

Román, A. S., Barrientos, M. S., Noceras, M. Á., Méndez, C. M., & Ares, A. E. (2018).Resistencia a la corrosión de aleaciones Al-Cu en biodiesel. Matéria. Revista Materia, 23(2). https://doi.org/10.1590/s1517-707620180002.0388

Kalpakjian, S., & Schmid, S. R. (2002). Manufactura, ingeniería y tecnología. Pearson educación.

Charco Zambrano, J. L. (2017). Fabricación de un prototipo de block de motor de combustión interna de dos tiempos por manufactura aditiva indirecta con una aleación de aluminio al silicio. Quito, 2017.

Roman, A. S. (2019). Influencia de la estructura de solidificación en la resistencia a la corrosión de aleaciones Al-Cu para el adecuado manejo de soluciones conteniendo NaCL y biodiesel.

Thangavelu, S. K., Ahmed, A. S., & Ani, F. N. (2016). Impact of metals on corrosive behavior of biodiesel-diesel-ethanol (BDE) alternative fuel. Renewable Energy, 94, 1–9. https://doi.org/10.1016/j.renene.2016.03.015

Coronado, M. A., Montero, G., García, C., Valdez, B., Ayala, R., & Pérez, A. (2017). Quality assessment of biodiesel blends proposed by the new Mexican policy framework. Energies, 10(5), 1–14. https://doi.org/10.3390/en10050631

Chandran, D., Khalid, M., Raviadaran, R., Lau, H. L. N., Liang Yung, C., Kanesan, D., & Salim, M. (2019). Sustainability of water in diesel emulsion fuel: An assessment of its corrosion behaviour towards copper. Journal of Cleaner Production, 220, 1005–1013. https://doi.org/10.1016/j.jclepro.2019.02.210

Bruice, P. Y., Olguín, V. C., Reyes, S. D., & García, A. V. G. (2015). Fundamentos de química orgánica. Pearson Educación.

Chandran, D., Ng, H. K., Lau, H. L. N., Gan, S., & Choo, Y. M. (2016). Investigation of the effects of palm biodiesel dissolved oxygen and conductivity on metal corrosion and elastomer degradation under novel immersion method. Applied Thermal Engineering, 104, 294–308. https://doi.org/10.1016/j.applthermaleng.2016.05.044

N. A. Gomez, R. Abonia, H. Cadavid, e I. H. Vargas, “Chemical and Spectroscopic Characterization of a Vegetable Oil used as Dielectric Coolant in Distribution Transformers”, J. Braz. Chem. Soc., vol. 22, no 12, pp. 2292–2303, 2011, doi: 10.1590/s0103-50532011001200009.

Fazal, M. A., Haseeb, A. S. M. A., & Masjuki, H. H. (2011). Biodiesel feasibility study: An evaluation of material compatibility; Performance; emission and engine durability. In Renewable and Sustainable Energy Reviews (Vol. 15, Issue 2, pp. 1314–1324). Elsevier Ltd. https://doi.org/10.1016/j.rser.2010.10.004

Feld, H., & Oberender, N. (2016). Characterization of Damaging Biodiesel Deposits and Biodiesel Samples by Infrared Spectroscopy (ATR-FTIR) and Mass Spectrometry (TOF-SIMS). SAE International Journal of Fuels and Lubricants, 9(3), 717–724. http://www.jstor.org/stable/26273500

Low, M. H., Mukhtar, M. N. A., Hagos, F. Y., & Noor, M. M. (2017). Tri-fuel (diesel-biodiesel-ethanol) emulsion characterization, stability and the corrosion effect. IOP Conference Series: Materials Science and Engineering, 257(1), 012082. https://doi.org/10.1088/1757-899X/257/1/012082

Baena, L. M., & Calderón, J. A. (2020). Effects of palm biodiesel and blends of biodiesel with organic acids on metals. Heliyon, 6(5), e03735. https://doi.org/10.1016/j.heliyon.2020.e03735

Bellot-Gurlet, L., Neff, D., Réguer, S., Monnier, J., Saheb, M., & Dillmann, P. (2009). Raman studies of corrosion layers formed on archaeological irons in various media. Journal of Nano Research, 8, 147–156. https://doi.org/10.4028/www.scientific.net/JNanoR.8.147