Study of clay materials rich in iron oxides for the desulfurization of biogas

Main Article Content

Fiorella Ulloa-Solano
Marco Chaves-Flores
Luis Andres Urvina-Savelli
Claudia C. Villarreal

Abstract

Costa Rica could generate 1,000,000 m3 of methane daily from biogas, but its use as energy source requires the application of desulfurization processes, for which the filtering materials are costly and not locally-sourced. The use of natural filtering substrates that are rich in iron oxides, like clay soils (SR) and red rocks (RR), for the removal of H2S from biogas was studied. The performance of the filter materials was tested in an anaerobic biodigestion system installed in a swine farm, with a daily biogas production of 20-30 m3, 70% methane. Six samples were initially analyzed by X-Ray Diffraction (XRD) and X-Ray Fluorescence (XRF) to quantify the iron oxides (Fe2O3) and two RR samples with the highest percentage of Fe2O3 were selected, RR2 with 4.8% w/w and RR3 with 7.2% w/w. The characterization of the filter media, before and after its use as a filter, was carried out using Scanning Electron Microscopy (SEM), X-Ray Energy Dispersion Spectroscopy (EDS), and XRD combined with Rietveld´s method (XRD-Rietveld). The absorption of sulfur was confirmed and a decrease of 4.8% w/w to 1.1% w/w of the Fe2O3 present in the RR was measured in the RR after applying it in the desulfurization process. The RR with a particle size between 2.4- 6.3 mm can remove up to 28% of H2S. The low efficiency of H2S removal suggests the search for other minerals that have higher fraction of iron oxides, to improve the desulfurization efficiency.

Article Details

How to Cite
Ulloa-Solano, F., Chaves-Flores, M., Urvina-Savelli, L. A., & C. Villarreal, C. (2022). Study of clay materials rich in iron oxides for the desulfurization of biogas. Tecnología En Marcha Journal, 35(7), Pág. 94–105. https://doi.org/10.18845/tm.v35i7.6338
Section
Artículo científico

References

F. A. Vélez Bowen, “Adsorción de metano (CH4) de biogás mediante un filtro relleno de un soporte con carbón activado y piedra pómez molida,” 2019.

T. Al Seadi et al., BIOGAS HANDBOOK. 2008.

FAO, “Guía teórico-práctica sobre el biogás y los biodigestores.” Buenos aires, p. 104, 2019.

B. Morero, E. Gropelli, and E. A. Campanella, “Revisión de las principales tecnologías de purificación de biogás,” Cienc. y Tecnol., vol. 1, no. 10, pp. 187–202, 2010.

A. G. Skerman, S. Heubeck, D. J. Batstone, and S. Tait, “Low-cost filter media for removal of hydrogen sulphide from piggery biogas,” Process Saf. Environ. Prot., vol. 105, pp. 117–126, 2017.

FAO, MINENERGIA, PNUD, and GEF, “Manual de Biogás,” Proyecto CHI/00/G32. p. 120, 2011.

A. Petersson, “14. Biogas cleaning,” in The Biogas Handbook: Science, Production and Applications, Woodhead Publishing Limited, 2013, pp. 329–341.

K. Tzu-Hsing, C. Hsin, L. Hsiao-Ping, and P. Ching-Yu, “Red soil as a regenerable sorbent for high temperature removal of hydrogen sulfide from coal gas,” J. Hazard. Mater., vol. 136, no. 3, pp. 776–783, 2006.

R. Mrosso, R. Machunda, and T. Pogrebnaya, “Removal of Hydrogen Sulfide from Biogas Using a Red Rock,” J. Energy, vol. 2020, pp. 1–10, 2020.

M. Garfí, J. Martí-Herrero, A. Garwood, and I. Ferrer, “Household anaerobic digesters for biogas production in Latin America: A review,” Renew. Sustain. Energy Rev., vol. 60, pp. 599–614, 2016.

A.-A. S. M. Magomnang and P. E. P. Villanueva, “Removal of Hydrogen Sulfide from Biogas using Dry Desulfurization Systems,” in International Conference on Agricultural, Environmental and Biological Sciences, 2014, vol. 24–25, pp. 65–68.

L. J. Cihacek and J. M. Bremner, “Characterization of the Sulfur Retained by Soils Exposed to Hydrogen Sulfide,” Commun. Soil Sci. Plant Anal., vol. 24, no. 1–2, pp. 85–92, 1993.

X. M. Meng, W. De Jong, and A. H. M. Verkooijen, “Effect of Hydrothermal Carbonization Reaction Parameters on,” Environ. Prog. Sustain. Energy, vol. 28, no. 3, pp. 360–371, 2009.

A. Davydov, K. T. Chuang, and A. R. Sanger, “Mechanism of H2S oxidation by ferric oxide and hydroxide surfaces,” J. Phys. Chem. B, vol. 102, no. 24, pp. 4745–4752, 1998.

Y. Cao et al., “Low-Temperature H2S Removal from Gas Streams over γ‑FeOOH, γ‑Fe2O3, and α‑Fe2O3: Effects of the Hydroxyl Group, Defect, and Specific Surface Area,” Ind. Eng. Chem. Res., vol. 58, no. 42, pp. 19353–19360, 2019.

R. C. Sahu, R. Patel, and B. C. Ray, “Removal of hydrogen sulfide using red mud at ambient conditions,” Fuel Process. Technol., vol. 92, no. 8, pp. 1587–1592, 2011.

G. E. Alvarado, G. Cárdenes, F. Alvarado, J. Murillo, and M. Arias, “Utilización de rocas ornamentales en Costa Rica desde tiempos precolombinos hasta el siglo XX,” Rev. Geológica América Cent., no. 26, pp. 39–51, 2011.

T. H. Ko and H. Chu, “Spectroscopic study on sorption of hydrogen sulfide by means of red soil,” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 61, no. 9, pp. 2253–2259, 2005.

K. Tzu-Hsing, C. Hsin, and T. Jeou-Jen, “Feasibility study on high-temperature sorption of hydrogen sulfide by natural soils,” Chemosphere, vol. 64, no. 6, pp. 881–891, 2006.

B. H. Toby and R. B. Von Dreele, “Appl. Cryst.” pp. 544–549, 2013.

ASTM International, Standard Specification for Woven Wire Test Sieve Cloth and Test Sieves. 2021, pp. 1–9.

ASTM International, “Standard Test Methods for Absorption and Bulk Specific Gravity of Dimension Stone,” ASTM International. pp. 9–11, 2021.

P. Mora Rojas, M. Chaves Flores, M. F. Ellis Chaves, and A. Bejarano Carrillo, “Uso de Biodigestores para el tratamiento de residuos en cercanías del Aeropuerto Juan Santamaría de Costa Rica como instrumento para el control de aves carroñeras,” RedBioLAC, vol. 4, pp. 9–13, 2020.

O. Acevedo-Sandoval, E. Ortiz-Hernández, M. Cruz-Sánchez, and E. Cruz-Chávez, “El papel de óxidos de hierro en suelos,” Terra Latinoaméricana, vol. 22, no. 4, pp. 485–497, 2004.