Hyperspectral vision system to study tropical species of trees
Main Article Content
Abstract
There is a small number of studies that consider the ecophysiological aspects of tropical plant species, this is due to the high cost of instrumentation. However, the technological revolution of the last decade has made it possible to develop low-cost electronic devices that, and along with the resources of artificial intelligence open the possibility to make very precise measurements. The goal is to foster sustainable production and to ensure the conservation of ecosystems. This work shows the development of an electronic system, as prototype capable of acquiring spectral data from images of the visible spectrum of leaves and processing their reflectance and wavelength, to analyze physiological variables (such as concentrations of chlorophyll and nitrogen) of tropical tree species in danger of extinction.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación y pueda editarlo, reproducirlo, distribuirlo, exhibirlo y comunicarlo en el país y en el extranjero mediante medios impresos y electrónicos. Asimismo, asumen el compromiso sobre cualquier litigio o reclamación relacionada con derechos de propiedad intelectual, exonerando de responsabilidad a la Editorial Tecnológica de Costa Rica. Además, se establece que los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
References
Arad and O. Ben-Shahar, “Sparse recovery of hyperspectral signal from natural RGB images,” in Computer Vision – ECCV 2016, Cham: Springer International Publishing, 2016, pp. 19–34.
G. Hughes, “On the mean accuracy of statistical pattern recognizers,” IEEE Trans. Inf. Theory, vol. 14, no. 1, pp. 55–63, 1968.
G. Piovesan et al., “Tree growth patterns associated with extreme longevity: Implications for the ecology and conservation of primeval trees in Mediterranean mountains,” Anthropocene, vol. 26, no. 100199, p. 100199, 2019.
Gowen, C. Odonnell, P. Cullen, G. Downey, and J. Frias, “Hyperspectral imaging – an emerging process analytical tool for food quality and safety control,” Trends Food Sci. Technol., vol. 18, no. 12, pp. 590–598, 2007.
Gowen, Y. Feng, E. Gaston, and V. Valdramidis, “Recent applications of hyperspectral imaging in microbiology,” Talanta, vol. 137, pp. 43–54, 2015.
H. Z. M. Shafri, A. Suhaili, and S. Mansor, “The performance of maximum likelihood, spectral angle mapper, neural network and decision tree classifiers in hyperspectral image analysis,” J. Comput. Sci., vol. 3, no. 6, pp. 419–423, 2015.
Hendrik and C. Maxime, “Assessing drought-driven mortality trees with physiological process-based models,” Agric. For. Meteorol., vol. 232, pp. 279–290, 2017.
Hillnhütter, A.-K. Mahlein, R. A. Sikora, and E.-C. Oerke, “Use of imaging spectroscopy to discriminate symptoms caused by Heterodera schachtii and Rhizoctonia solani on sugar beet,” Precis. Agric., vol. 13, no. 1, pp. 17–32, 2012.
J. Stam, “Diffraction shaders,” in Proceedings of the 26th annual conference on Computer graphics and interactive techniques - SIGGRAPH ’99, 1999.
Lowe, N. Harrison, and A. P. French, “Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress,” Plant Methods, vol. 13, p. 80, 2017.
N. Akhtar and A. Mian, “Hyperspectral Recovery from RGB Images using Gaussian Processes,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 1, pp. 100–113, 2020.
N. Hernández-Sánchez, G. P. Moreda, A. Herre-ro-Langreo, and Á. Melado-Herreros, “Assessment of internal and external quality of fruits and vegetables,” in Food Engineering Series, Cham: Springer International Publishing, 2016, pp. 269–309.
S. C. Baker, S. Kasel, L. G. van Galen, G. J. Jordan, C. R. Nitschke, and E. C. Pryde, “Identifying regrowth forests with advanced mature forest values,” For. Ecol. Manage., vol. 433, pp. 73–84, 2019.
X. Hadoux, N. Gorretta, and G. Rabatel, “Weeds-wheat discrimination using hyperspectral imagery,” in CIGRAgeng 2012, International Conference on Agricultural Engineering, 2012, p. 6 p.
Y. Zhong, L. Zhang, B. Huang, and P. Li, “An unsupervised artificial immune classifier for multi/hyperspectral remote sensing imagery,” IEEE Trans. Geosci. Remote Sens., vol. 44, no. 2, pp. 420–431, 2006.