Growth and initial development of Musa textilis Née and its interaction with the timber species Cordia alliodora, Hieronyma alchorneoides and Dipterix panamensis in Costa Rica

Main Article Content

Mónica Araya-Salas
Dagoberto Arias-Aguilar
Juan Carlos Valverde-Otárola
Kevin Arias-Ceciliano
Jesús Mora-Molina

Abstract

Musa textilis known in Costa Rica and another countries as abaca, is a species of the Musaceae family which has been commercially cultivated for its ability to produce industrial quality fiber. A key factor for the rural economy of Costa Rica is to increase the productivity and quality of the fiber and to optimize management and harvesting costs. The present work seeks to generate valid results on the positive effect of the interaction of timber trees in an agroforestry arrangement with abaca, with special interest in the future effect of shade on the growth of all species and on fiber quality. In the literature there are few studies that analyze the value of the interaction of the abaca crop with trees in terms of their growth and physiological development. Therefore, this study presents preliminary results of the effect of shading by three native timber tree species on the growth of abaca. For this purpose, monthly measurements of growth (diameter and total height) and physiological development were made SPAD measurements. The hypothesis is that there is a significant positive effect (increase) in the growth and development of all species established with shade, showing significant differences in the long term in each of the shading treatments. In general, it was found that there are significant differences between the growth in height for the plants established in association with timber species and the control plants.

Article Details

How to Cite
Araya-Salas, M. ., Arias-Aguilar, D. ., Valverde-Otárola, J. C. ., Arias-Ceciliano, K. ., & Mora-Molina, J. . (2022). Growth and initial development of Musa textilis Née and its interaction with the timber species Cordia alliodora, Hieronyma alchorneoides and Dipterix panamensis in Costa Rica. Tecnología En Marcha Journal, 35(6), Pág. 40–49. https://doi.org/10.18845/tm.v35i6.6234
Section
Artículo científico

References

S. Paulus, H. Schumann, H. Kuhlmann y J. Léon, «High-precision laser scanning system for capturing 3D plant architecture and analysing growth of cereal plants,» Biosystems Engineering, vol. 121, p. 1–11, 2014.

J. C. Valverde , D. Arias-Aguilar, E. Montero-Zeledón y D. Gutierrez-Fallas, «Fluorescencia, reflectancia y respuesta fisiológica al estrés hídrico en plántulas de Gmelina arborea Roxb.,» Uniciencia, vol. 35, nº 1, pp. 320-334, 2021.

D. L. Moreno Echeverry , D. C. Useche Rodríguez y H. E. Balaguera López, «Respuesta fisiológica de especies arbóreas al anegamiento. Nuevo conocimiento sobre especies de interés en el arbolado urbano de Bogotá,» Colombia forestal, vol. 22, nº 1, p. 51–67, 2018.

J. C. Valverde y D. Arias, «Efectos del estrés hídrico en crecimiento y desarrollo fisiológico de Gliricidia sepium (Jacq.) Kunth ex Walp,» Colombia Forestal, vol. 23, nº 1, p. 20–34, 2020.

L. Varone, M. Ribas-Carbo, C. Cardona, .... y J. Flexas, «Stomatal and non-stomatal limitations to photosynthesis in seedlings and saplings of Mediterranean species pre-conditioned and aged in nurseries: Different response to water,» Environmental and Experimental Botany, vol. 75, p. 235–247, 2012.

L. P. Moreno, «Respuesta de las plantas al estrés por déficit hídrico. Una revisión,» Agronomía Colombiana, vol. 27, nº 2, pp. 179-191, 2009.

M. C. Díaz-Barradas , J. B. Gallego-Fernández y M. Zunzunegui, «Plant response to water stress of native and non-native Oenothera drummondii populations,» Plant Physiology and Biochemistry, vol. 154, p. 219–228, 2020.

T. Dueck, W. V. Ieperen y K. Taulavuori, «Light perception, signalling and plant responses to spectral quality and photoperiod in natural and horticultural environments,» Environmental and Experimental Botany, vol. 121, pp. 1-150, 2016.

M. B. Bande , J. Grenz, V. B. Asio y J. Sauerborn, «Morphological and physiological response of Abaca (Musa textilis var. Laylay) to shade, irrigation and fertilizer application at different stages of plant growth,» International Journal of AgriScience, vol. 3, nº 2, pp. 157-175, 2013.

R. Cerda, C. Allinne , C. Gary, .... y J. Avelino, «Effects of shade, altitude and management on multiple ecosystem services in coffee agroecosystems,» European Journal of Agronomy, vol. 82, pp. 308-319, 2017.

F. Charbonnier, O. Roupsard, G. Le Maire, .... y A. Clément‐Vidal, «Increased light‐use efficiency sustains net primary productivity of shaded coffee plants in agroforestry system,» Plant, Cell y Environment, vol. 40, nº 8, pp. 1592-1608, 2017.

J. V. Lazo y J. Ascencio, «Efecto de diferentes calidades de luz sobre el crecimiento de Cyperus rotundus,» Bioagro, vol. 22, nº 2, pp. 153-158, 2010.

F. Casierra-Posada , J. E. Peña-Olmos y C. Ulrichs, «Basic growth analysis in strawberry plants (Fragaria sp.) exposed to different radiation environments,» Agronomía Colombiana, vol. 30, nº 1, pp. 25-33, 2012.

J. C. Valverde, D. Méndez y D. Arias, «Efectos del defoliador Atta cephalotes Linnaeaus. en el crecimiento y el desarrollo fisiológico e hidráulico de árboles juveniles de Gmelina arborea Roxb. en condiciones controladas.,» Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, vol. 44, nº 170, pp. 214-226, 2020.

M. M. Bande, V. B. Asio, J. Sauerborn y V. Römheld, «Growth Performance of Abaca (Née) Musa textilis Integrated in Multi-strata Agroecosystems,» Annals of Tropical Research, vol. 38, nº 1, pp. 19-35, 2016.

C. Lacuna-Richman, «The role of abaca (Musa textilis) in the household economy of a forest village.,» Smallscale forest economics, management and policy , vol. 1, nº 1, pp. 93-101, 2002.

R. A. Palma, L. E. Tiongco, O. P. Canencia, .... y J. Y. Dagonio, «Gall rust disease incidence of Falcata (Paraserianthes falcataria (L.) Nielsen) in Falcata – based agroforestry systems in Misamis Oriental,» IOP ConfSeries: Earth and Environmental Science, vol. 449, nº 1, p. 012035, 2020.

M. Nebangka, B. R. Sumayku y J. Pongoh, «Potensi Pengembangan Pisang Abacá (Musa textilis Née) di Pulau Karakelang,» COCOS, vol. 1, nº 1, 2020.

L. Moreno, «Economic feasibility of intercropping selected abaca variety with annual crops in flat open lands,» Philippine Journal of Crop Science, vol. 19, nº 1, p. 12, 1994.

R. B. Armecin, M. H. P. Seco , P. S. Caintic y E. J. M. Milleza, «Effect of leguminous cover crops on the growth and yield of abaca (Musa textilis Nee),» Industrial Crops and Products, vol. 21, nº 3, pp. 317-323, 2005.

L. R. Holdridge, «Life zone ecology,» IICA, Tropical Science Center, San José de Costa Rica, 1978.

Climate-data, «Clima: Las Horquetas (Costa Rica).,» Climate-data, 2016. [En línea]. Available: https:// es.climate-data.org/america-del-norte/costa-rica/heredia/las-horquetas-874786/.

E. Ortiz y C. Soto , Atlas Digital de Costa Rica 2014, Cartago, Costa Rica: Instituto Tecnológico de Costa Rica., 2014.

Statsoft, Statistica (9.0), Londres, Inglaterra: Statsoft, 2015.

M. Bande, Ecophysiological and Agronomic Response of Abaca (Musa textilis) to Different Resource Conditions in Leyte Island, Philippines [Tesis de doctorado no publicada]., Stuttgart, Alemania: Institute of Plant Production and Agroecology in the Tropics and Subtropics University of Hohenheim., 2012.

A. Delgado, M. Montero, O. Murillo y M. Castillo, «Crecimiento de especies forestales nativas en la zona norte de Costa Rica,» Agronomía Costarricense, vol. 27, nº 1, pp. 63-78, 2003.

CATIE, «Laurel (Cordia alliodora). Banco de Semillas Forestales,» CATIE, s.f.. [En línea]. Available: http://bsf. catie.ac.cr/listing/laurel-cordia-alliodora-1965619175.html. [Último acceso: 12 julio 2021].

B. Dunn, H. Singh y C. Goad, «Relationship between chlorophyll meter readings and nitrogen in poinsettia leaves,» Journal of Plant Nutrition, vol. 41, nº 12, pp. 1566-1576, 2018.

Most read articles by the same author(s)

<< < 1 2 3 4 > >>