Evaluation of artificial intelligence techniques in the classification of partial discharges
Main Article Content
Abstract
The detection of Partial Discharge (PD) signals in the Ultra High Frequency (UHF) range performs identify and classify, in a minimally invasive way, of defects in high voltage equipment, as well as estimating the degree of urgency in carrying out preventive maintenance. In this paper, machine learning techniques were used to perform automatic recognition of patterns obtained from PD UHF signal envelopes. Therefore, an experimental arrangement was designed to emulate different PD sources: an oil vat with flat-tip electrodes, a hydro generator bar, and a potential transformer. From the signals launched in this arrangement, envelopes were generated, from which a series of attributes in the time domain were extracted, such as kurtosis, maximum amplitude, and rise time. Then, the selection of attributes was carried out through an association of algorithms, including k-means, to reduce the dimensionality of the data to increase the efficiency of the classifier algorithm. Finally, a classification of PD signals was performed using an artificial neural network, decision tree, and random forest. The results induced that the attributes extracted from the envelopes were effective in classifying PD signs, with mean accuracy values g reater than 95% when the optimized database was used.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación y pueda editarlo, reproducirlo, distribuirlo, exhibirlo y comunicarlo en el país y en el extranjero mediante medios impresos y electrónicos. Asimismo, asumen el compromiso sobre cualquier litigio o reclamación relacionada con derechos de propiedad intelectual, exonerando de responsabilidad a la Editorial Tecnológica de Costa Rica. Además, se establece que los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
References
IEC 60270. (2000). High Voltage Test Techniques: Partial Discharge Measurement
Nobrega, L., Costa, E., Serres, A., Xavier, G., & Aquino, M. (2019). UHF Partial Discharge Location in Power Transformers via Solution of the Maxwell Equations in a Computational Environment. Sensors, 19(15), 3435. https://doi.org/10.3390/s19153435
Silva, A. D. C., Nobrega, L. A. M. M., da Costa, E. G., Xavier, G. V. R., da Cruz, A. R. D., & Gomes, M. P. A. (2020). Evaluation of Partial Discharge Sources Location Algorithms on Signals with Different Signal to Noise Ratio. In 2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE). IEEE. https://doi.org/10.1109/ichve49031.2020.9279940
Working Group A2.27 (2008). Recommendations for condition monitoring and condition assessment facilities for transformers. Electra, n. 237, p. 48–57.
Nattrass, D. A. (1988). Partial discharge measurement and interpretation. IEEE Electrical Insulation Magazine, 4(3), 10–23. https://doi.org/10.1109/57.830
Kreuger, F. H., Gulski, E., & Krivda, A. (1993). Classification of partial discharges. IEEE Transactions on Electrical Insulation, 28(6), 917–931. https://doi.org/10.1109/14.249365
Macedo, E. C. T., Villanueva, J. M., da Costa, E. G., Freire, R. C. S., Araujo, D. B., de Souza Neto, J. M. R., & Glover, I. A. (2012). Assessment of dielectric degradation by measurement, processing and classification of Partial Discharges. In 2012 IEEE International Power Modulator and High Voltage Conference (IPMHVC). IEEE. https://doi.org/10.1109/ipmhvc.2012.6518812
de Souza Neto, J. M. R., Rocha Neto, J. S. d., Macedo, E. C. T., Glover, I. A., & Judd, M. D. (2014). An envelope detector as a trading cost technique for radiometric partial discharge detection. In 2014 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). IEEE. https://doi.org/10.1109/ i2mtc.2014.6861013
Pinpart, T., & Judd, M. D. (2010). Differentiating between partial discharge sources using envelope comparison of ultra-high-frequency signals. IET Science, Measurement & Technology, 4(5), 256–267. https://doi. org/10.1049/iet-smt.2009.0064
Han, L., Yan, J., Fan, S., Xu, M., Liu, Z., Geng, Y., & Guan, C. (2019). Feature Extraction of UHF PD Signals Based on Diode Envelope Detection and Linear Discriminant Analysis. In 2019 5th International Conference on Electric Power Equipment - Switching Technology (ICEPE-ST). IEEE. https://doi.org/10.1109/icepest.2019.8928690
Liu, W., Liu, S., & Hu, X. (2009). Feature extraction and pattern recognition of signals radiated from partial discharge. In 2009 5th Asia-Pacific Conference on Environmental Electromagnetics (CEEM 2009). IEEE. https:// doi.org/10.1109/ceem.2009.5304189
Wu, W.-J., & Xu, Y. (2010). Correlation analysis of visual verbs’ subcategorization based on Pearson’s correlation coefficient. In 2010 International Conference on Machine Learning and Cybernetics (ICMLC). IEEE. https:// doi.org/10.1109/icmlc.2010.5580507
Xiaosheng Peng, Chengke Zhou, Hepburn, D. M., Judd, M. D., & Siew, W. H. (2013). Application of K-Means method to pattern recognition in on-line cable partial discharge monitoring. IEEE Transactions on Dielectrics and Electrical Insulation, 20(3), 754–761. https://doi.org/10.1109/tdei.2013.6518945
Yazdandoust, A. R., Haghjoo, F., & Shahrtash, S. M. (2008). Insulation status assessment in high voltage cables based on decision tree algorithm. In Energy Conference (EPEC). IEEE. https://doi.org/10.1109/ epc.2008.4763312
Peng, X., Yang, G., Zheng, S., Xiong, L., & Bai, J. (2016). Optimal feature selection for partial discharge recognition of cable systems based on the random forest method. In 2016 China International Conference on Electricity Distribution (CICED). IEEE. https://doi.org/10.1109/ciced.2016.7576360
Xavier, G. V. R., da Costa, E. G., Serres, A. J. R., Nobrega, L. A. M. M., Oliveira, A. C., & Sousa, H. F. S. (2019). Design and Application of a Circular Printed Monopole Antenna in Partial Discharge Detection. IEEE Sensors
Journal, 19(10), 3718–3725. https://doi.org/10.1109/jsen.2019.2896580