Analysis of a new geometric factor for soil resistivity measurement

Main Article Content

Arthur Francisco Andrade
Edson Guedes da Costa
George Rossany Soares de Lira
Matheus Cavalcante Rique

Abstract

Grounding is a fundamental part of electrical installations and of the electrical system as a whole. In order to ensure good performance of grounding, it must be properly designed and, for this, a fundamental step is soil-resistivity measurement and stratification. In this sense, this paper compares different procedures for soil modeling from measurements with the four-electrode method. Wenner’s conventional method and a new method, which uses a new geometric factor to estimate with greater accuracy the soil resistivity for the case of small spacings, are compared. For the comparison, finite element method is applied for elaborating case studies. Initially, the performance of both methods is compared for the stratification of a two-layer soil. Then, the differences that the soil modeling methods exert on grounding resistance calculation for the case of simple electrodes (vertical rod and horizontal cable), are analyzed. It is verified that the proposed method provides more accurate results, allowing to model with greater accuracy the resistivity of the soil surface layer. Wenner’s conventional method, if applied with spacing smaller than 1.0 m, resulted in greater than 20% for some of the analyzed cases. With the proposed geometric factor, the maximum error was 2.0%.

Article Details

How to Cite
Andrade, A. F. ., Guedes da Costa, E. ., Soares de Lira, G. R. ., & Cavalcante Rique, M. . (2021). Analysis of a new geometric factor for soil resistivity measurement. Tecnología En Marcha Journal, 34(7), Pág 171–181. https://doi.org/10.18845/tm.v34i7.6039
Section
Artículo científico

References

IEEE Guide for Safety in AC Substation Grounding, IEEE Standard 80. 4 ed. New York: IEEE, 2015. 226 p.

IEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Grounding System. IEEE Standard 81. New York: IEEE, 2012. 86 p.

F. Wenner, “A method of measuring earth resistivity,”. National Bureau of Standards, Scientific Bulletin, 12, p. 478–496, 1915. Disponível em: https://nvlpubs.nist.gov/nistpubs/bulletin/12/nbsbulletinv12n4p469_A2b.pdf. Acesso em: 01 jul. 2018.

K. Sheshyekani, M. Akbari, B. Tabei, e R. Kazemi, “Wideband Modeling of Large Grounding Systems to Interface With Electromagnetic Transient Solvers”, IEEE Trans. Power Del., vol. 29, nº 4. Institute of Electrical and Electronics Engineers (IEEE), p. 1868–1876, ago. 2014. doi: 10.1109/tpwrd.2014.2310631.

L. D. Grcev, A. Kuhar, V. Arnautovski-Toseva, e B. Markovski, “Evaluation of High-Frequency Circuit Models for Horizontal and Vertical Grounding Electrodes IEEE Trans. Power Del., vol. 33, nº 6. Institute of Electrical and Electronics Engineers (IEEE), p. 3065–3074, dez. 2018. doi: 10.1109/tpwrd.2018.2840960.

J. G. Safar, R. Shariatinasab, e J. He, “Comprehensive Modeling of Grounding Electrodes Buried in Ionized Soil Based on MoM-HBM Approach”, IEEE Trans. Power Del., vol. 35, nº 3. Institute of Electrical and Electronics Engineers (IEEE), p. 1390–1398, jun. 2020. doi: 10.1109/tpwrd.2019.2943909.

M. Nazari, R. Moini, S. Fortin, F. P. Dawalibi, e F. Rachidi, “Impact of Frequency-Dependent Soil Models on Grounding System Performance for Direct and Indirect Lightning Strikes”, IEEE Trans. Electromagn. Compat., vol. 63, nº 1. Institute of Electrical and Electronics Engineers (IEEE), p. 134–144, fev. 2021. doi: 10.1109/ temc.2020.2986646.

J. Li, T. Yuan, Q. Yang, W. Sima, C. Sun, e M. Zahn, “Numerical and Experimental Investigation of Grounding Electrode Impulse-Current Dispersal Regularity Considering the Transient Ionization Phenomenon”, IEEE Trans. Power Del., vol. 26, nº 4. Institute of Electrical and Electronics Engineers (IEEE), p. 2647–2658, out. 2011. doi: 10.1109/tpwrd.2011.2158860.

R. M. S. de Oliveira, D. M. Fujiyoshi, R. C. F. Araújo, J. A. S. do Nascimento, e L. F. P. Carvalho, “Finitedifference modeling of dispersive soils validated via experimental evaluation of transient grounding signals”, J. Electrostat., vol. 87. Elsevier BV, p. 263–275, jun. 2017. doi: 10.1016/j.elstat.2017.06.001.

L. Qi, X. Cui, Z. Zhao, e H. Li, “Grounding Performance Analysis of the Substation Grounding Grids by Finite Element Method in Frequency Domain”, IEEE Trans. Magn., vol. 43, nº 4. Institute of Electrical and Electronics Engineers (IEEE), p. 1181–1184, abr. 2007. doi: 10.1109/tmag.2007.892283.

M. Akbari, K. Sheshyekani, e M. R. Alemi, “The Effect of Frequency Dependence of Soil Electrical Parameters on the Lightning Performance of Grounding Systems”, IEEE Trans. Electromagn. Compat., vol. 55, nº 4. Institute of Electrical and Electronics Engineers (IEEE), p. 739–746, ago. 2013. doi: 10.1109/temc.2012.2222416.

J. Trifunovic e M. Kostic, “Quick calculation of the grounding resistance of a typical 110kV transmission line tower grounding system”, Electr. Power Syst. Res., vol. 131. Elsevier BV, p. 178–186, fev. 2016. doi: 10.1016/j. epsr.2015.10.014.

B. Salarieh, H. M. J. De Silva, e B. Kordi, “Electromagnetic transient modeling of grounding electrodes buried in frequency dependent soil with variable water content”, Electr. Power Syst. Res., vol. 189. Elsevier BV, p. 106595, dez. 2020. doi: 10.1016/j.epsr.2020.106595.

S. L. Butler e G. Sinha, “Forward modeling of applied geophysics methods using Comsol and comparison with analytical and laboratory analog models”, Comput. Geosci., vol. 42. Elsevier BV, p. 168–176, maio 2012. doi: 10.1016/j.cageo.2011.08.022.

S. L. Butler e Z. Zhang, “Forward modeling of geophysical electromagnetic methods using Comsol”, Comput. Geosci., vol. 87. Elsevier BV, p. 1–10, fev. 2016. doi: 10.1016/j.cageo.2015.11.004.

M. S. Zhdanov, Foundations of Geophysical Electromagnetic Theory and Methods. Cambridge, MA: Elsevier, 2017. 770 p. IBSN: 978-0-444-63890-8.

E. Faleiro, G. Asensio, e J. Moreno, “Improved measurements of the apparent resistivity for small depths in Vertical Electrical Soundings”, J. Appl. Geophy., vol. 131. Elsevier BV, p. 117–122, ago. 2016. doi: 10.1016/j. jappgeo.2016.05.016.

A. F. Andrade, E. G. da Costa, e G. R. S. Lira, “Methods for field measurement of electrical parameters of soil as functions of frequency”, Electr. Power Syst. Res., vol. 199. Elsevier BV, p. 107447, out. 2021. doi: 10.1016/j. epsr.2021.107447.

O. C. Zienkiewicz, C. Emson, e P. Bettess, “A novel boundary infinite element”, Int. J. Numer. Methods Eng., vol. 19, nº 3. Wiley, p. 393–404, mar. 1983. doi: 10.1002/nme.1620190307.