An extended natural excitation technique for the modal analysis of ambient power system data
Main Article Content
Abstract
Nowadays, various advanced signal processing techniques have been developed to analyze ambient power system data obtained from wide-area measurement systems. An extended natural excitation technique is proposed in this paper for characterizing the dynamic information contained in the ambient data. This novel technique is based on the natural excitation technique and parallel factor decomposition. The proposed technique uses the correlation of the measured data through several correlation matrices that are used to form a third-order tensor. From this correlation tensor, the impulse responses of the power system can be extracted by parallel factor decomposition. After, the eigensystem realization algorithm is applied to each impulse response to estimate its oscillatory frequency and damping ratio. The proposed technique is applied to ambient data obtained from transient stability simulations of the New England-New York power system. The results indicate that the oscillatory frequencies and damping ratios can be accurately estimated using the proposed technique. Therefore, it is concluded that the proposed technique could be used for monitoring the ambient oscillations using wide-area measurement systems.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación y pueda editarlo, reproducirlo, distribuirlo, exhibirlo y comunicarlo en el país y en el extranjero mediante medios impresos y electrónicos. Asimismo, asumen el compromiso sobre cualquier litigio o reclamación relacionada con derechos de propiedad intelectual, exonerando de responsabilidad a la Editorial Tecnológica de Costa Rica. Además, se establece que los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
References
J. F. Hauer, D. J. Pal, D. J. Trudnowski, and J. G. DeSteese, “A perspective on wams analysis tools for tracking of oscillatory dynamics,” IEEE Power Engineering Society General Meeting, pp. 1-10, Tampa, USA, June 2007.
J. W. Pierre, D. J. Trudnowski, and M. K. Donnelly, “Initial results in electromechanical mode identification from ambient data,” IEEE Transactions on Power Systems, vol. 12, no. 3, pp. 1245‐1251, August 1997.
G. Rogers, Power System Oscillations, Kluwer Academic Publishers, USA, 2000.
A. G. Phadke and J. S. Thorp, Synchronized Phasor Measurements and their Applications, Springer, USA, 2008.
R. W. Wies, J. W. Pierre, and D. J. Trudnowski, “Use of arma block processing for estimating stationary lowfrequency electromechanical modes of power systems,” IEEE Transactions on Power Systems, vol. 18, no. 1, pp. 167‐173, February 2003.
G. Liu and V. Venkatasubramanian, “Oscillation monitoring from ambient PMU measurements by frequency domain decomposition,” IEEE International Symposium on Circuits and Systems, pp. 2821-2824, Seattle, USA, May 2008.
J. Turunen, L. Haarla, and T. Rauhala, “Performance of wavelet-based damping estimation method under ambient conditions,” IREP Symposium Bulk Power System Dynamics and Control - VIII, Rio de Janeiro, Brazil, August 2010.
L. Vanfretti, L. Dosiek, J. W. Pierre, D. Trudnowski, J. H. Chow, R. Garca-Valle, and U. Aliyu, “Application of ambient analysis techniques for the estimation of electromechanical oscillations from measured PMU data in four different power systems,” European Transactions on Electrical Power, vol. 21, no. 4, pp. 1640-1656, May 2011.
M. Larsson and D. S. Laila, “Monitoring of inter-area oscillations under ambient conditions using subspace identification,” IEEE Power & Energy Society General Meeting, pp. 1-6, Calgary, Canada, July 2009.
J. Thambirajah, N. F. Thornhill, and B. C. Pal, “A multivariate approach towards inter-area oscillation damping under ambient conditions via independent component analysis and random decrement,” IEEE Transactions on Power Systems, vol. 26, no. 1, pp. 315‐322, February 2011.
J. M. Seppänen, L. C. Haarla, and J. Turunen, “Modal analysis of power systems with eigendecomposition of multivariate autoregressive models,” IEEE PowerTech, pp. 1‐6, Grenoble, France, June 2013.
S. A. N. Sarmadi and V. Venkatasubramanian, “Electromechanical mode estimation using recursive adaptive stochastic subspace identification,” IEEE Transactions on Power Systems, vol. 29, no. 1, pp. 349‐358, January 2014.
J. M. Seppänen, J. Turunen, M. Koivisto, N. Kishor, and L. C. Haarla, “Modal analysis of power systems through natural excitation technique,” IEEE Transactions on Power Systems, vol. 29, no. 4, pp. 1642‐1652, July 2014.
P. Zhang, X. Wang, X. Wang, and J. S. Thorp, “Synchronized measurement based estimation of inter-area electromechanical modes using the Ibrahim time domain method,” Electric Power Systems Research, vol. 111, pp. 85‐95, March 2014.
J. M. Seppänen, J. Turunen, M. Koivisto, and L. C. Haarla, “Measurement based analysis of electromechanical modes with second order blind identification,” Electric Power Systems Research, vol. 121, pp. 67‐76, April 2015.
P. Zhang, Y. Teng, X. Wang, and X. Wang, “Estimation of interarea electromechanical modes during ambient operation of the power systems using the RDT-ITD method,” Electric Power Systems Research, vol. 71, pp. 285‐296, April 2015.
H. Khalilinia, and V. Venkatasubramanian, “Modal analysis of ambient PMU measurements using orthogonal wavelet bases,” IEEE Transactions on Smart Grid, vol. 6, no. 6, pp. 2954‐2962, November 2015.
S. You, J. Guo, G. Kou, Y. Liu, and Y. Liu, “Oscillation mode identification based on wide-area ambient measurements using multivariate empirical mode decomposition,” Electric Power Systems Research, vol. 134, pp. 158‐166, January 2016.
J. M. Caicedo, S. J. Dyke, and E. A. Johnson, “Natural excitation technique and eigensystem realization algorithm for phase I of the IASC-ASCE benchmark problem: simulated data,” Journal of Engineering Mechanics, vol. 130, no. 1, pp. 49-60, January 2004.
J. N. Juang and R. S. Pappa, “An eigensystem realization algorithm for modal parameter identification and model reduction,” Journal of Guidance, vol. 8, no. 5, pp. 620-627, October 1985.
P. Kundur, Power System Stability and Control, McGraw-Hill Education, USA, 1994.
J. Machowski, J. Bialek, and J. Bumby, Power System Dynamics: Stability and Control, Wiley, U. K., 1997.
R. Bro, “PARAFAC: Tutorial and applications,” Chemometrics and Intelligent Laboratory Systems, vol. 48, no. 2, pp. 149-171, October 1997.
G. Tomasi and R. Bro, “A comparison of algorithms for fitting the PARAFAC model,” Computational Statistics and Data Analysis, vol. 50, no. 7, pp. 1700-1734, April 2006.