Quantitative assessment of aldehydes in air and rainwater: a case study in natural conservation area of Costa Rica
Main Article Content
Abstract
Aldehydes in the environment are among most organic compounds that participate in photochemical reactions, mainly forming radicals in significant quantities. These have harmful effects on the health of the inhabitants of cities with polluted atmospheres, mainly formaldehyde and acetaldehyde. In the present work, the concentration of seven aldehydes in air and rainwater samples in a conservation area of Costa Rica (Los Cusingos Biological Reserve, located in the South Pacific, Pérez Zeledón) was determined during 2017. For the sampling and analysis of the aldehydes, the TO-11A (EPA) method was used. Sampling used adsorption cartridges coated with a 2,4-dinitrophenylhydrazine (2,4-DNFH) solution. The samples were quantified by means of a liquid chromatograph coupled to a UV-Visible detector. The highest aldehyde concentrations in air samples correspond to formaldehyde (62.2 ± 3.1 μg/m3), acetaldehyde (88.1 ± 4.9 μg/m3) and acrolein (102.2 ± 5.2 μg/m3) during 4 hours of sampling. Heptanal was determined to be the least contributory aldehyde, as it was below the detection limit. The only aldehyde quantified in the rainwater samples was formaldehyde. The results obtained in the air sample suggest an increase in the concentration of aldehydes correlated with solar radiation and temperature, suggesting as the main contributor the photochemical reactions that take place in the air with precursor hydrocarbons.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación y pueda editarlo, reproducirlo, distribuirlo, exhibirlo y comunicarlo en el país y en el extranjero mediante medios impresos y electrónicos. Asimismo, asumen el compromiso sobre cualquier litigio o reclamación relacionada con derechos de propiedad intelectual, exonerando de responsabilidad a la Editorial Tecnológica de Costa Rica. Además, se establece que los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
References
R. Chang, y K. Goldsby, Química. China: Mc Graw Hill Education, 2013.
J. Seinfeld, and S. Pandis, Atmospheric Chemistry and Physics from Air Pollution to Climate Change. New Jersey, USA: John Wiley & Sons, 2006.
S. Manahan, Introducción a la química ambiental. España: Reverté, 2007.
L. Mielke, K. Pratt, P. Shepson, S. McLuckey, A. Wisthaler, and A. Hansel, “Quantitative determination of biogenic volatile organic compounds in the atmosphere using proton-transfer reaction linear ion trap mass spectrometry,” Analytical Chemistry, vol 82, no 19, pp.7952-7967, 2010. https://doi.org/10.1021/ac1014244
E. Pichersky, and J. Gershenzon, “The formation and function of plant volátiles: perfumes for pollinator attraction and defense,” Current Opinion in Plant Biology, vol. 5, no 3, pp. 237-243, 2002. https://doi.org/10.1016/S1369-5266(02)00251-0
E. Muños, y M. Grau, Ingeniería Química. Madrid, España: Universidad Nacional de Educación a Distancia, 2013.
H. Simon, L. Beck, P. Bhave, F. Divita, Y. Hsu, D. Luecken, D. Mobley, G. Pouliot, A. Reff, G. Sarwar, and M. Strum, “The development and uses of EPA’s SPECIATE database,” Atmospheric Pollution Research, vol. 1, no 4, pp. 196-206. 2010. https://doi.org/10.5094/APR.2010.026
M. Salgado, “Estudio cinético de las reacciones de interés atmosférico, reacciones del radical NO3 con aldehídos,” Tesis doctoral, Universidad de Castilla-La Mancha, España, 2001.
B. Delgado, “Compuestos carbonílicos en muestras de interés medioambiental y agroalimentario,” Tesis doctoral, Universidad de la Laguna, Tenerife, España, 2009.
J. Kinsella, and D. Hwang, “Biosynthesis of flavors by Penicillium roqueforti,” Biotechnology and Bioengineering, vol. 18, no 7, pp. 927-938, 1976. https://doi.org/10.1002/bit.260180706
G. Lees, and G. Jago, “Role of acetaldehyde in metabolism: a Review 1. Enzymes catalyzing reactions involving acetaldehyde,” Journal of Dairy Science, vol. 61, no 9, pp. 1205-1215, 1978. https://doi.org/10.3168/jds.S0022-0302(78)83708-4
Instituto Meteorológico Nacional (IMN). Clima de Costa Rica. Pacífico Sur. https://www.imn.ac.cr/documents/10179/31165/PacificoSur.pdf/e9ff2013-e30e-46a3-ad39-934200753fff (accesado el 17 de enero, 2019).
D. Vega, “Aplicación de dos técnicas analíticas de muestreo para la determinación de aldehídos en aire y en agua de lluvia en tres zonas de Costa Rica”. Tesis de maestría, Universidad Nacional, Heredia, Costa Rica, 2000.
EPA. Environmental Protection Agency. Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. U.S. 1999. https://www3.epa.gov/ttnamti1/files/ambient/airtox/to-11ar.pdf (accesado 24 de Marzo, 2016).
John H. Seinfeld, Spyros N. Pandis. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. John Wiley & Sons, 2016. ISBN 1118947401.
H. B. Singh, L. J. Salas, R. B. Chatfield, E. Czech, A. Fried, J. Walega, M. J. Evans, B. D. Field, D. J. Jacob, D. Blake, B. Heikes, R. Talbot, G. Sachse, J. H. Crawford, M. A. Avery, S. Sandholm, and H. Fuelberg, “Analysis of the atmospheric distribution, sources, and sinks of oxygenated volatile organic chemicals based on measurements over Pacific during TRACE-P,” Journal of Geophysical Research Atmospheres, vol. 109, no 15, pp. 1-20, 2004. https://doi.org/10.1029/2003JD003883
R. Peña, S. García, C. Herrero, M. Losada, A. Vásquez, and T. Lucas, “Organic acids and aldehydes in rainwater in a northwest region of Spain,” Atmospheric Environment, vol. 36, no 34, pp. 5277-5288, 2002. https://doi.org/10.1016/S1352-2310(02)00648-9
C. Guimaraes, D. Custodio, R. Oliveira, L. Varandas, and G. Arbilla, “Comparative study of automotive, aircraft and biogenic emissions of aldehydes and aromatic compounds,” Bulletin of Environmental Contamination and Toxicology, vol. 84, no 2, pp. 180-184, 2010. doi: 10.1007/s00128-009-9891-5
Y. Yu, S. We, H. Lu, Y. Feng, X. Wang, G. Sheng, and J. Fu, “Characteristics of atmospheric carbonyls and VOCs in Forest Park in South China,” Environmental Monitoring and Assessment, vol. 137, no 1-3, pp. 275-285, 2008. Doi:10.1007/s10661-007-9759-2
P. Khare, G. Satsangi, N. Kumar, M. Kumari, and S. Srivastava, “HCHO, HCOOH and CH3COOH in air and rainwater at a rural tropical site in North Central India”. Atmospheric Environment, vol. 31, no 23, pp. 3867-3875, 1997. https://doi.org/10.1016/S1352-2310(97)00263-X.
Brenda Salazar-López, José Pablo Sibaja-Brenes, Juan Valdés-González, Gerardo Rodríguez-Rodríguez. Evaluación de la concentración de los aldehídos en el aire en la Reserva Biológica Monteverde y en la ciudad de Heredia, Costa Rica. Revista de Ciencias Ambientales (Trop J Environ Sci). (Junio, 2016). EISSN: 2215-3896. 50(1): 41-52.
Instituto Meteorológico Nacional. (2017). Boletín Meteorológico Mensual Junio 2017. ISSN: 1654-0465.
Instituto Meteorológico Nacional. (2017). Boletín Meteorológico Mensual Julio 2017. ISSN: 1654-0465.
Triola, M. Estadística, Novena edición: editorial Pearson Educación, México. 2004; pp 498-510, 742.