Design of a tool for failures detection in multirrotor systems
Main Article Content
Abstract
Unmanned vehicles (UAVs) with multirotors, have a control system that focuses mainly on seeking vehicle stability during flight, however, it does not allow it to detect or predict when a failure occurs, and often does not respond in the best way. This article initially presents 9 categories of failures that could be found during the flight of a UAV, as well as the design of a recurrent neural network capable of detecting patterns in the data series taken from a set of sensors, mounted on the drone. The comparison of two different networks is presented, the LSTM and the GRU, where it is shown that the GRU network is the most appropriate for this type of problem, obtaining up to 97% success with the training data used. In addition, a response to failures is proposed through a communication protocol called MAVLink, which would inform the user of the presence of the failure, in addition to disconnecting the motor if necessary.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación y pueda editarlo, reproducirlo, distribuirlo, exhibirlo y comunicarlo en el país y en el extranjero mediante medios impresos y electrónicos. Asimismo, asumen el compromiso sobre cualquier litigio o reclamación relacionada con derechos de propiedad intelectual, exonerando de responsabilidad a la Editorial Tecnológica de Costa Rica. Además, se establece que los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
References
T. Audronis, Building Multicopter Video Drones. Packt Publishing Ltd, 2014.
P. Misra, G. Kandaswamy, P. Mohapatra, K. Kumar, and P. Balamuralidhar, “Structural health monitoring of multi-rotor micro aerial vehicles”, DroNet 2018 - Proceedings of the 2018 ACM International Conference on Mobile Systems, Applications and Services, pp. 21-26, 2018. doi: 10.1145/3213526.3213531.
G. E. G. Jr, C. S. Kulkarni, E. Hogge, A. Hsu, and N. Ownby, “A Study of the Degradation of Electronic Speed Controllers for Brushless DC Motors”, 2017.
Roger, “A Guide to Understanding LiPo Batteries”, Roger’s Hobby Center, pp. 1-9, 2018. [Online]. Available: https://rogershobbycenter.com/lipoguide.
S. Rajagopalan, J. M. Aller, J. A. Restrepo, T. G. Habetler, and R. G. Harley,”Detection of rotor faults in brushless DC motors operating under nonstationary conditions”, IEEE Transactions on Industry Applications, vol. 42, no. 6, pp. 1464-1477, 2006, issn: 00939994. doi: 10.1109/TIA.2006.882613.
D. K. Athanasopoulos, P. D. Karagkounis, J. C. Kappatou, M. Ieee, and S. Tsotoulidis, “Demagnetization Faults Analysis in a BLDC Motor for Diagnostic Purposes”, 2014 International Conference on Electrical Machines (ICEM), pp. 1862-1868, 2014. doi: 10.1109/ICELMACH.2014.6960437.
W. H. Kersting, “Causes and effects of single-phasing induction motors”, IEEE Transactions on Industry Applications, vol. 41, no. 6, pp. 1499-1505, 2005, issn: 00939994. doi: 10.1109/TIA.2005.857467.
A. Verner, “LSTM Networks for Detection and Classification of Anomalies in Raw Sensor Data” by in Computer Science College of Engineering and Computing, no. May 2019. doi: 10.13140/RG.2.2.19049.54888.
C. Olah, Understanding LSTM Networks, 2015. [Online]. Available: http://colah.github.io/posts/2015-08-Understanding-LSTMs/ .