Atmospheric corrosion of low carbon steel, at different exposure angles, in a tropical environment
Main Article Content
Abstract
In this research, the effect of the environment in a tropical region of central Costa Rica on the corrosion of low carbon steel was studied, with the objective of establishing the variation of the corrosion rate as a function of the exposure angle. For this purpose, specimens were placed at different angles (0°, 30°, 45°, 60° and 90°) in three stations along the Central Valley; environmental parameters such as humidity, wetting time, temperature and the presence of atmospheric pollutants, such as sulfates and chlorides, were also measured. As main results it was determined that the steel presented a linear increase of corrosion with the decrease of the angle with respect to the horizontal, likewise the corrosion is uniform in angles less than 60 degrees, presenting partial corrosion in high angles, especially for protected faces. Corrosivity is at a mild urban level, type C2, according to ISO standards.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación y pueda editarlo, reproducirlo, distribuirlo, exhibirlo y comunicarlo en el país y en el extranjero mediante medios impresos y electrónicos. Asimismo, asumen el compromiso sobre cualquier litigio o reclamación relacionada con derechos de propiedad intelectual, exonerando de responsabilidad a la Editorial Tecnológica de Costa Rica. Además, se establece que los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
References
NACE International Impact. International measures of prevention, application and economic of corrosion technology study. Houston, TX, USA: NACE International, 2016. Available from: http://impact.nace.org/executive-summary.aspx [Accesed 15th december 2019]
Hansson, C.M.”The Impact of corrosion on Society”. In Metallurgical and Materials Transactions A. Volumen 42A, October, 2011.
Morcillo M., Chico B., Díaz I., Cano H., de la Fuente D. “Atmospheric Corrosion Data of Weathering Steels. A Review”. Corrosion Science. Volume 77, 2013, pp 6-24
Vera, R., Rosales, B., Tapia, C. “Effect of the exposure angle in the corrosion rate of plain carbon steel in a marine atmosphere. Corrosion Science, 45, 2003, pp 321–337.
Murkute Pratik, Kumar Ravi, Choudhary S., Maharana H.S., Ramkumar J., Mondal K. “Comparative Atmospheric Corrosion Behavior of a Mild Steel and an Interstitial Free Steel”. In Journal of Materials Engineering and Performance. Volume 27(9), 4497. 2018.
Alcántara Jenifer, de la Fuente Daniel, Chico Belén, Simancas Joaquín, Díaz Iván, Morcillo Manuel. “Marine Atmospheric Corrosion of Carbon Steel. A Review”. In Materials. MDPI, Publisher of Open Access. 2017.
J. Tidblad, V. Kucera, F. Samie, S. N. Das, C. Bhamornsut, L. C. Peng, K. L. So, Z. Dawei, L. T. H. Lien, H. Schollenberger, C. V. Lungu and D. Simbi, ““Exposure Programme on Atmospheric Corrosion Effects of Acidifying Pollutants in Tropical and Subtropical Climates”. In Water Air Soil Pollut-focus. 2007, pp 241-247.
Wenjuan Chen, Long Hao, Junhua Dong, Wei Ke. “Effect of Sulphur dioxide on the corrosion of a low alloy Steel in simulated coastal industrial atmosphere”.in Corrosion Sciense, 83, 2014. pp 155-163.
Zhao-liang Li, Kui Xiao, Chao-fang Dong, Xue-qun Cheng, Wei Xue, Wei Yu. “Atmospheric corrosion behavior of low-alloy steels in a tropical marina environment” in J. Iron Steel Res. Int. 26, 2019, pp 1315–1328.
Groysman A.) “Corrosion in Natural and Industrial Environments” In: Corrosion for Everybody. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3477-9_3. 2010
Xinran Li, Xiutong Wang, Liyuan Wang, Yuanyuan Sun, Binbin Zhang, Hongling Li, Yanliang Huang, and Baorong Hou. “Corrosion Behavior of Q235 Steel in Atmospheres Containing SO2 and NaCl”. In Journal of Materials Engineering and Performance. 28. 2019
Qing-he Zhao, Wei Liu, Jian-wei Yang, Yi-chun Zhu, Bin-li Zhang, and Min-xu Lu. “Corrosion behavior of low alloy steels in a wet–dry acid humid environment”, In International Journal of Minerals, Metallurgy and Materials, Volume 23, Number 9, 2016.
Instituto Meteorológico Nacional de Costa Rica Segunda Comunicación sobre Clima, variabilidad y cambio climático en Costa Rica. San José, Costa Rica: MINAET, IMN, PNUD, CRRH. 2008 Available from: http://users.clas.ufl.edu/prwaylen/geo3280articles/el_clima_variabilidad_y_cambio_climatico_en_cr_version_final.pdf [Accesed 22 december 2020]
Santana Juan J., Cano Víctor, Vasconcelos Helena C., Souto Ricardo M. “The Influence of Test-Panel Orientation and Exposure Angle on the Corrosion Rate of Carbon Steel”. In Mathematical Modelling. Metals. 10, 2020.
PRUGAM. Planificación Regional Urbana del Gran Área Metropolitana, San José, Costa Rica, Ministerio de Vivienda y Asentamientos Humanos, 2009. Available from Ministerio de Vivienda y Asentamientos Humanos: http://www.mivah.go.cr/PRUGAM.shtml [Accesed 23th december 2019]
INEC. Anuario Estadístico 2010. San José, Costa Rica: Instituto Nacional de Estadística y Censos, Ministerio de Hacienda, 2011. Available from: https://www.inec.cr/sites/default/files/documentos/anuario_estadistico/publicaciones/reanuarioestad2010-02.pdf [Accesed 20th november 2019]
Chen Pan, Wei Han, Zhenyao Wang, Chuan Wang, and Guocai Yu. “Evolution of initial Atmospheric Corrosion of Carbon Steel in an Industrial Atmosphere”, in ASM International. Vol 25(12). 2016.
Solano, J., & Villalobos, R. Regiones y Subregiones Climáticas de Costa Rica. San José, Costa Rica: Instituto Meteorológico Nacional, 2000. Available from: https://www.imn.ac.cr/documents/10179/20909/Regionalizaci%C3%B3n+clim%C3%A1tica+de+Costa+Rica#:~:text=Esta%20misma%20disposici%C3%B3n%20monta%C3%B1osa%2C%20junto,cual%20pertenece%20la%20Regi%C3%B3n%20Valle [Accesed 12th june 2019]
Corrosion of metal and alloys, Classification of corrosivity of atmospheres, ISO DIS 9223, ISO, Geneva. 2012.
National Oceanographic and Atmospheric Administration, National Hurricane Center and Central Pacific Hurricane Center. Available from: https://www.nhc.noaa.gov/data/tcr/index.php?season=2019&basin=atl [Accesed 14th may 2021]
Corrosion of metal and alloys, Guiding values for the corrosivity categories of atmospheres, ISO DIS 9224, ISO, Geneva. 2012.
Corrosion of metal and alloys, Corrosivity of atmospheres, methods of measurement of pollution ISO DIS 9225, ISO, Geneva. 2012,
Corrosion of metal and alloys, Corrosivity of atmospheres, Determination of corrosion rates of standard specimens for the evaluation of corrosivity, ISO DIS 9226, ISO, Geneva, 2012,
Morcillo M. “Fundamental and research frontier of atmospheric corrosion”. Madrid, Spain: Materials, 2017. DOI: https://doi.org/10.3390/books978-3-03842-642-4.
Wei Han, Chen Pan, Zhenyao Wang and Guocai YuInitial. “Atmospheric Corrosion of Carbon Steel in Industrial Environment”. In Journal of Materials Engineering and Performance. Volume 24(2), 2015.
Xiao Kui, Dong Chao-fang, Li Xiao-gang, Wang Fu-ming. ”Corrosion Products and Formation Mechanism During Initial Stage of Atmospheric Corrosion of Carbon Steel”. In Journal of Iron and Steel Research International.15(5), 2008. pp42-48.
Muñóz AC, Fernández W, Gutiérrez JA, & Zárate, E. 2002. “Variación estacional del viento en Costa Rica y su relación con los regímenes de lluvia”. Tópicos meteorológicos y oceanográficos 9 (1): 1-13.
Campos D, Alvarado G.(2018)” Análisis de la distribución espaciotemporal de la caída de cenizas del volcán turrialba (2010 - 2018), costa rica: isofrecuencia, volumen y afectación” Rev. Geol. Amér. Central n.59 San Pedro de Montes de Oca Jul./Dec.