The Plantlia: free android app for measurement of foliar area and color with automated scaling
Main Article Content
Abstract
There is a plethora of apps available for different biological applications, however, mobile software for plant measurement, specifically for field conditions are limited. Additionally, there is a need to create large training datasets for machine learning applications. A free app called Plantlia, which is available to download from the Google Play Store, aims to resolve this with an intuitive interface, and a method to automatically scale images using homography. Plantlia also includes methods to share results from either direct measurements or thresholded images. This paper aims to describe some of the functions of Plantlia, as well as show scenarios that display its performance. Images from cellphones and drone pictures were used for validation on different devices. This is important, as it means that users with low-cost equipment, like drones with no GPS information, can still analyze localized field information. Similarly, researchers can do communal efforts to share and receive in-field data to create machine learning datasets.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación y pueda editarlo, reproducirlo, distribuirlo, exhibirlo y comunicarlo en el país y en el extranjero mediante medios impresos y electrónicos. Asimismo, asumen el compromiso sobre cualquier litigio o reclamación relacionada con derechos de propiedad intelectual, exonerando de responsabilidad a la Editorial Tecnológica de Costa Rica. Además, se establece que los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
References
J. Schindelin, C. T. Rueden, M. C. Hiner, and K. W. Eliceiri, “The ImageJ ecosystem: An open platform for biomedical image analysis,” Mol. Reprod. Dev., vol. 82, no. 7–8, pp. 518–529, 2015, doi: 10.1002/mrd.22489.
G. Lobet, “Image Analysis in Plant Sciences: Publish Then Perish,” Trends Plant Sci., vol. 22, no. 7, pp. 559–566, Jul. 2017, doi: 10.1016/j.tplants.2017.05.002.
H. M. Easlon and A. J. Bloom, “Easy Leaf Area: Automated Digital Image Analysis for Rapid and Accurate Measurement of Leaf Area,” Appl. Plant Sci., vol. 2, no. 7, p. 1400033, Jul. 2014, doi: 10.3732/apps.1400033.
N. Petrellis, “A smart phone image processing application for plant disease diagnosis,” in 2017 6th International Conference on Modern Circuits and Systems Technologies (MOCAST), May 2017, pp. 1–4, doi: 10.1109/MOCAST.2017.7937683.
M. Müller-Linow, J. Wilhelm, C. Briese, T. Wojciechowski, U. Schurr, and F. Fiorani, “Plant Screen Mobile: an open-source mobile device app for plant trait analysis,” Plant Methods, vol. 15, no. 1, p. 2, Dec. 2019, doi: 10.1186/s13007-019-0386-z.
Z.-Q. Zhao, L.-H. Ma, Y. Cheung, X. Wu, Y. Tang, and C. L. P. Chen, “ApLeaf: An efficient android-based plant leaf identification system,” Neurocomputing, vol. 151, pp. 1112–1119, Mar. 2015, doi: 10.1016/j.neucom.2014.02.077.
D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis., 2004, doi: 10.1023/B:VISI.0000029664.99615.94.
S. A. K. Tareen and Z. Saleem, “A comparative analysis of SIFT, SURF, KAZE, AKAZE, ORB, and BRISK,” in 2018 International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), Mar. 2018, pp. 1–10, doi: 10.1109/ICOMET.2018.8346440.
293 DG Lowe - US Patent 6, 711 and U. 2004, “Method and apparatus for identifying scale invariant features in an image and use of same for locating an object in an image,” 2004.
G. Bradski and A. Kaehler, “The OpenCV Library,” Dr Dobbs J. Softw. Tools, vol. 3, no. 1, 2000, doi: 10.1111/0023-8333.50.s1.10.
A. Larrinaga and L. Brotons, “Greenness Indices from a Low-Cost UAV Imagery as Tools for Monitoring Post-Fire Forest Recovery,” Drones, vol. 3, no. 1, p. 6, Jan. 2019, doi: 10.3390/drones3010006.
D. G. Lowe, “Object recognition from local scale-invariant features,” in Proceedings of the Seventh IEEE International Conference on Computer Vision, 1999, pp. 1150–1157 vol.2, doi: 10.1109/ICCV.1999.790410.
M. Muja and D. G. Lowe, “FAST APPROXIMATE NEAREST NEIGHBORS WITH AUTOMATIC ALGORITHM CONFIGURATION,” in Proceedings of the Fourth International Conference on Computer Vision Theory and Applications, 2009, pp. 331–340, doi: 10.5220/0001787803310340.
M. A. Fischler and R. C. Bolles, “Random sample consensus,” Commun. ACM, vol. 24, no. 6, pp. 381–395, Jun. 1981, doi: 10.1145/358669.358692.
L. C. Ngugi, M. Abelwahab, and M. Abo-Zahhad, “Recent advances in image processing techniques for automated leaf pest and disease recognition – A review,” Inf. Process. Agric., vol. 8, no. 1, pp. 27–51, Mar. 2021, doi: 10.1016/j.inpa.2020.04.004.
S. Beucher, “Watershed, Hierarchical Segmentation and Waterfall Algorithm,” 1994, pp. 69–76.