Wasps venoms of the genus Parachartergus sp. and Polybia sp (Vespidae: Polistinae) in Costa Rica: a biological potential to explore
Main Article Content
Abstract
Latin America is home to a great diversity of species of Hymenoptera order, which comprises wasps of the genera Polybia and Parachartergus. Wasp stings characterize for causing reactions such as vascular permeability, activation and mobilization of inflammatory cells and inflammation mediating molecules. This has increased the biotechnological interest in wasp venom, in order to identify its bioactive components involved in biological responses, looking for molecules with specific activities. In recent decades, it has been found that the most promising wasps molecules are mastoparan peptides and other anticancer peptides (ACPs). The potential of these peptides attributes mainly to their size and amphipathic structure, which allows them to interact differently with cell membranes.
The proteomic profile reported for the Polybia paulista venom motivates to study the profiles from different insects in Costa Rica, considering that the components of the venom may vary among different geographical areas, as well as between species and genera depending, for example, on their predators and prey. This document aims to highlight the pharmacological potential contained in the venom of wasps of the genera Parachartergus sp. and Polybia sp., mainly to treat cancer, taking advantage of Costa Rica’s biodiversity and technological capabilities, thereby contributing to the fight against one of the major causes of morbidity and mortality worldwide.
The proteomic profile reported for the Polybia paulista venom motivates to study the profiles from different insects in Costa Rica, considering that the components of the venom may vary among different geographical areas, as well as between species and genera depending, for example, on their predators and prey. This document aims to highlight the pharmacological potential contained in the venom of wasps of the genera Parachartergus sp. and Polybia sp., mainly to treat cancer, taking advantage of Costa Rica's biodiversity and technological capabilities, thereby contributing to the fight against one of the major causes of morbidity and mortality worldwide.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación y pueda editarlo, reproducirlo, distribuirlo, exhibirlo y comunicarlo en el país y en el extranjero mediante medios impresos y electrónicos. Asimismo, asumen el compromiso sobre cualquier litigio o reclamación relacionada con derechos de propiedad intelectual, exonerando de responsabilidad a la Editorial Tecnológica de Costa Rica. Además, se establece que los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
References
Sánchez-Bayo, F., & Wyckhuys, K. (2019). “Worldwide decline of the entomofauna: A review of its drivers”. Biological conservation, 232, 8-27.
Fratini, F., Cilia, G., Turchi, B., & Felicioli, A. (2017). “Insects, arachnids and centipedes venom: A powerful weapon against bacteria. A literature review.” Toxicon, 130, 91-103.
Zumbado, M., & Azofeifa, D. (2018). “Guía Básica de Entomología Costa Rica y Centro América Insectos de importancia agrícola.” Programa Nacional de Agricultura Orgánica (PNAO), 132-14
Moreno, M., & Giralt, E. (2015). “Three Valuable Peptides from Bee and Wasp Venoms for Therapeutic and Biotechnological Use: Melittin, Apamin and Mastoparan”. Toxins, 7(4), 1126–1150. doi:10.3390/toxins7041126
Choi, M. B., & Lee, Y. (2020). “The structure and antimicrobial potential of wasp and hornet (Vespidae) mastoparans: A review.” Entomological Research. doi:10.1111/1748-5967.12457
Xue, H., Li, J., Xie, H., & Wang, Y. (2018). “Review of drug repositioning approaches and resources.” International journal of biological sciences, 14(10), 1232.
O’Donnell, S., & Hunt, J. (2013). “Group hunting by workers of two Neotropical swarm-founding paper wasps, Parachartergus apicalis and Agelaia sp.” Insectes Sociaux, 60(3), 369-372.
Rusina, L.(2015). “Principles of organization of polistinae (Hymenoptera, Vespidae) population.” Entomological Review, 95(8), 1036–1050. doi:10.1134/s0013873815080102
Perez-Riverol, A., dos Santos-Pinto, J., Lasa, A., Palma, M., & Brochetto-Braga, M.(2017). “Wasp venomic: Unravelling the toxins arsenal of Polybia paulista venom and its potential pharmaceutical applications.” Journal of Proteomics, 161, 88–103. doi:10.1016/j.jprot.2017.04.016
Sturm, G., Varga, E., Roberts, G., Mosbech, H., Bilò, M., Akdis, C., … Muraro, A. (2017). “EAACI guidelines on allergen immunotherapy: Hymenoptera venom allergy.” Allergy, 73(4), 744–764. doi:10.1111/all.13262
Muller, J. D. A. I., Moslaves, I. S. B., de Oliveira, E. J. T., Portugal, L. C., Oliveira, R. J., Mortari, M. R., & ToffoliKadri, M. C. (2020). “Pro-inflammatory response induced by the venom of Parachartergus fraternus wasp.” Toxicon. 190, 11-19.
Silva, J., Neto, L., Neves, R., Gonçalves, J. C., Trentini, M. M., Mucury-Filho, R., … Mortari, M. R. (2017). “Evaluation of the antimicrobial activity of the mastoparan Polybia-MPII isolated from venom of the social wasp Pseudopolybia vespiceps testacea (Vespidae, Hymenoptera).” International Journal of Antimicrobial Agents, 49(2), 167–175. doi:10.1016/j.ijantimicag.2016.11.013
Syed, H., Tauseef, M., & Ahmad, Z. (2018). “A connection between antimicrobial properties of venom peptides and microbial ATP synthase.” International journal of biological macromolecules, 119, 23-31.
Torres, M. D., Pedron, C. N., Higashikuni, Y., Kramer, R. M., Cardoso, M. H., Oshiro, K. G., ... & Lu, T. K. (2018). “Structure-function-guided exploration of the antimicrobial peptide polybia-CP identifies activity determinants and generates synthetic therapeutic candidates.” Communications biology, 1(1), 1-16.
Organización Mundial de la Salud. (2020). “Informe Mundial 2020 Sobre el Paludismo.” Recuperado de:
Organización Mundial de la Salud. (2020). “Global Initiative for Cancer Registry Development.” Recuperado de: https://www.who.int/es/news-room/fact-sheets/detail/cancer
Dias, N. B., de Souza, B. M., Gomes, P. C., & Palma, M. S. (2014). “Peptide diversity in the venom of the social wasp Polybia paulista (Hymenoptera): a comparison of the intra-and inter-colony compositions.” Peptides, 51, 122-130
Dos Santos-Pinto JRA, Perez-Riverol A, Lasa AM et al. (2018) “Diversity of peptidic and proteinaceous toxins from social Hymenoptera venoms.” Toxicon 148: 172–19.
Lee SH, Baek JH, Yoon KA (2016) “Differential Properties of Venom Peptides and Proteins in Solitary vs. Social Hunting Wasps.” Toxins (Basel) 8: 32
Hilchie, A. L., Sharon, A. J., Haney, E. F., Hoskin, D. W., Bally, M. B., Franco, O. L., ... & Hancock, R. E. (2016). “Mastoparan is a membranolytic anti-cancer peptide that works synergistically with gemcitabine in a mouse model of mammary carcinoma.” Biochimica Et Biophysica Acta (BBA)-Biomembranes, 1858(12), 3195-3204.
Hoshina, M. M., Santos, L. D., Palma, M. S., & Marin-Morales, M. A. (2013). “Cytotoxic, genotoxic/antigenotoxic and mutagenic/antimutagenic effects of the venom of the wasp Polybia paulista.” Toxicon, 72, 64-70.
de Souza, B. M., da Silva, A. V. R., Resende, V. M. F., Arcuri, H. A., dos Santos Cabrera, M. P., Neto, J. R., & Palma, M. S. (2009). “Characterization of two novel polyfunctional mastoparan peptides from the venom of the social wasp Polybia paulista.” Peptides, 30(8), 1387-1395.
Moreno, M., Zurita, E., & Giralt, E. (2014). “Delivering wasp venom for cancer therapy.” Journal of controlled release, 182, 13-21.
Siddiqua, A., Khattak, K., & Nwaz, S. (2019). “Venom proteins; Prospects for anticancer therapy.” Pak. J. Biochem. Mol. Biol, 52(2), 15-26.
Ministerio de Salud de Costa Rica. (2019). “Análisis de la Situación de Salud 2018.” Memoria Institucional, Mayo 2019. Recuperado de: https://www.ministeriodesalud.go.cr/sobre_ministerio/memorias/memoria_2014_201 8/ memoria_institucional_2018.pdf
Dongol, Y., L Dhananjaya, B., K Shrestha, R., & Aryal, G. (2016). “Wasp venom toxins as a potential therapeutic agent.” Protein and peptide letters, 23(8), 688-698.
Yamada, Y.; Shinohara, Y.; Kakudo, T.; Chaki, S.; Futaki, S.; Kamiya, H.; Harashima, H. “Mitochondrial delivery of mastoparan with transferrin liposomes equipped with a pH-sensitive fusogenic peptide for selective cancer therapy”. Int. J. Pharm. 2005, 303, 1–7.
Pullaiah, T. (Ed.). (2018). “Global Biodiversity: Volume 4: Selected Countries in the Americas and Australia.” CRC Press.
Rosales-López C., Arnáez-Serrano E., Moreira- González I., Garro-Monge, G., Agüero-Hernández A. L., Jiménez-Quesada K., Abdelnour-Esquivel, A., & Calvo-Castro, L. (2019). “Investigaciones en plantas con potencial bioactivo.” Revista Tecnología En Marcha, 32(9), Pág 12–21. https://doi.org/10.18845/tm.v32i9.4621
Morales-Sánchez, J., Ulloa-Fernández, A., Castro-Piedra, S., Centeno-Cerdas, C., & Calvo-Castro, L. A. (2019). “Cultivo Celular e Ingeniería de Tejidos: Aplicaciones en Biomedicina.” Revista Tecnología en Marcha, g-56.
Cologna, C. T., dos Santos Cardoso, J., Jourdan, E., Degueldre, M., Upert, G., Gilles, N., ... & Quinton, L. (2013). “Peptidomic comparison and characterization of the major components of the venom of the giant ant Dinoponera quadriceps collected in four different areas of Brazil.” Journal of proteomics, 94, 413-422.
Badhe, R.V., Thomas, A.B., Harer, S.L., Deshpande, A.D., Salvi, N., Waghmare, A., 2006. “Intraspecific variation in protein of red scorpion (Mesobuthus tamulus, Coconsis, Pocock) venoms from Western and Southern India.” J. Venomous Anim. Toxins Incl. Trop. Dis. 12, 612-619.