Optimization of the operating point of an axial impeller without central shaft in blood flow
Main Article Content
Abstract
This article covers the obtention of the mathematical models for the volumetric strain, pressure difference, and flow responses of an axial impeller designed for a ventricular assist device. This impeller has a novel geometry that requires the validation of its behavior at the structural and fluid dynamics level. Based on the specifications required for the application, the optimal operating point of the impeller is obtained in terms of its rotational velocity, material, and blood flow output velocity. Likewise, the range of values of the factors that meet the specifications is obtained. Among the materials included are Platinum and the biocompatible polymer Peek. The analysis is carried out by means of a full factorial design of experiments, with results previously obtained using simulation tools. Obtaining the mathematical models is carried out by debugging the input factors and their interactions.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación y pueda editarlo, reproducirlo, distribuirlo, exhibirlo y comunicarlo en el país y en el extranjero mediante medios impresos y electrónicos. Asimismo, asumen el compromiso sobre cualquier litigio o reclamación relacionada con derechos de propiedad intelectual, exonerando de responsabilidad a la Editorial Tecnológica de Costa Rica. Además, se establece que los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
References
Organización Mundial de la Salud, “Enfermedades transmisibles y análisis de salud: Situación de salud en las Américas: Indicadores Básicos 2017”, Washington, D.C., Estados Unidos.
M. A. Siman, J. Watson, J. T. Baldwin, W. R. Wagner, and H. S. Borovetz, “Current and future considerations in the use of mechanical circulatory support devices”, Annu. Rev. Biomed. Eng., vol. 10, núm. 1, pp. 59–84, Ago. 2008, doi: 10.1146/annurev.bioeng.9.060906.151856.
M. Hosseinipour, R. Gupta, M. Bonnell, and M. Elahinia, “Rotary mechanical circulatory support systems”, J. Rehabil. Assist. Technol. Eng., vol. 4, p. 205566831772599, Jan. 2017, doi: 10.1177/2055668317725994.
L. W. Miller et al., “Use of a continuous-flow device in patients awaiting heart transplantation”, N. Engl. J. Med., vol. 357, núm. 9, pp. 885–896, Ago. 2007, doi: 10.1056/NEJMoa067758.
J. G. Rogers, et al., “Intrapericardial left ventricular assist device for advanced heart failure”, N. Engl. J. Med., vol. 376, no. 5, pp. 451–460, Feb. 2017, doi: 10.1056/NEJMoa1602954.
G. Ortiz, “Modelo de un nuevo concepto de impulsor para la aplicación en bombas para sangre”, Tesis de Doctorado, Instituto Tecnológico de Costa Rica, 2017.
C. Mayorga, “Determinación computacional del comportamiento fluido-estructura de un impulsor en flujo sanguíneo”, Tesis de Maestría, Instituto Tecnológico de Costa Rica, 2018.
J. Muñoz, “Determinación computacional de la fatiga en un impulsor axial sin eje central en flujo sanguíneo”, Tesis de Maestría, Instituto Tecnológico de Costa Rica, 2021.
V. Jagota, A. P. S. Sethi, and K. Kumar, “Finite element method: An overview”, Walailak Journal of Science and Technology, vol. 10, núm. 1. pp. 1–8, Feb. 2013, doi: 10.2004/wjst.v10i1.499.
R. C. Hibbeler, “Mechanics of materials”, 9th ed, NJ, USA: Pearson Education, 2014.
A. Bedford, and K. Liechti, “Mechanics of materials”, 2nd ed, Switzerland: Springer Nature, 2020.
H. Gutiérrez Pulido, and R. de la Vara Salazar, “Análisis y diseño de experimentos”, 3rd ed, México: McGraw-Hill, 2012.
D. Montgomery, “Diseño y análisis de experimentos”, 8th ed, USA: John Wiley & Sons, 2013.
R. Hernández, C. Fernández, and P. Baptista, “Metodología de la investigación”, 6th ed, México: McGraw-Hill, 2014.
K. J. Bathe, H. Zhang, and S. Ji, “Finite element analysis of fluid flows fully coupled with structural interactions,” Comput. Struct., vol. 72, no. 1–3, pp. 1–16, Jul. 1999, doi: 10.1016/S0045-7949(99)00042-5.
J. C. Pedro, and P. Sibanda, “An Algorithm for the Strong-Coupling of the Fluid-Structure Interaction Using a Staggered Approach,” ISRN Appl. Math., vol. 2012, pp. 1–14, Jun. 2012, doi: 10.5402/2012/391974.
M. R. Hasniyati, H. Zuhailawati, and S. Ramakrishnan, “A Statistical Prediction of Multiple Responses Using Overlaid Contour Plot on Hydroxyapatite Coated Magnesium via Cold Spray Deposition,” Procedia Chem., vol. 19, pp. 181–188, Jan. 2016, doi: 10.1016/J.PROCHE.2016.03.091.