Gesture recognition using Kinect to detect unsafe behaviors performed by drivers
Main Article Content
Abstract
Vehicle drivers’ unsafe behaviors, like using a cellular phone while driving, is one of the leading
causes of traffic accidents worldwide. This unsafe practice is hard to regulate and control.
However, it is possible with the use of an automated gesture detection system that indicates a
dangerous behavior. The use of cameras with 3D depth sensors can aid in analyzing objects
and people in real time with high precision, identifying features and figures. These sensors use
a technology referred to as “point cloud”, which emits an array of laser lights and measures the
time of return (fly time) back to the sensor, determining the depth of each one of these points.
This technology permitted the development of a gesture recognition application that is capable
of automatically detecting the action that indicates that a driver is using a cellular phone while
driving. An initial functional simulation was developed using background subtraction, feature
analysis, and histogram analysis algorithms using the program V-Rep, which can detect the
gesture that would indicate this behavior. Furthermore, a prototype was implemented using real
images taken with the Kinect that were processed using Octave using the same algorithms used
for the simulation, thus supporting the effectiveness of the application.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación y pueda editarlo, reproducirlo, distribuirlo, exhibirlo y comunicarlo en el país y en el extranjero mediante medios impresos y electrónicos. Asimismo, asumen el compromiso sobre cualquier litigio o reclamación relacionada con derechos de propiedad intelectual, exonerando de responsabilidad a la Editorial Tecnológica de Costa Rica. Además, se establece que los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
References
Bouwmans, T., Porikli, F., Höferlin, B., & Vacavant, A. (2014). Background Modeling and Foreground Detection
for Video Surveillance. Chapman and Hall/CRC.
Cheung, S.-C. S., & Kamath, C. (2007). Robust techniques for background subtraction in urban traffic
video. Technical Paper, Center for Applied Scientific Computing, Lawrence Livermore National Laboratory,
California. Recuperado el 27 de setiembre de 2015, de https://computation.llnl.gov/casc/sapphire/pubs/UCRLCONF-200706.pdf
Dramanan. (2013). Background Subtraction. Recuperado el 27 de setiembre de 2015, de http://www.ics.uci.
edu/~dramanan/teaching/cs117_spring13/lec/bg.pdf
Murphy-Chutorian, E., Doshi, A., & Trivedi, M. M. (2007). Head Pose Estimation for Driver Assistance Systems:
A Robust Algorithm and Experimental Evaluation. Intelligent Transportation Systems Conference, 2007 (pp.
-714). IEEE. Recuperado el 22 de setiembre de 2015, de http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arn
umber=4357803&url=http%3A%2F%2Fieeexplore.ieee.org%2Fstamp%2Fstamp.jsp%3Ftp%3D%26arnumber
%3D4357803
Open CV. (n.d.). Open Source Computer Vision. Recuperado el 26 de setiembre de 2015, de How to Use
Background Subtraction Methods: http://docs.opencv.org/master/d1/dc5/tutorial_background_subtraction.
html#gsc.tab=0
Organización Mundial de la Salud. (2009). Informe sobre la situación mundial de la seguridad vial 2009.
Recuperado el 29 de agosto de 2015, de http://www.who.int/violence_injury_prevention/road_safety_status/
report/web_version_es.pdf?ua=1
Premaratne, P. (2014). Historical Development of Hand Gesture Recognition. En Human Computer Interaction
Using Hand Gestures (págs. 5-29). Singapore: Springer. doi:10.1007/978-981-4585-69-9_2
Vacavant, A., Chateu, T., Wilhelm, A., & Lequièvre, L. (2013). A benchmark dataset for outdoor foreground/background extraction. Computer Vision-ACCV 2012 Workshops, (págs. 291-300). Springer. doi:10.1007/978-3-
-37410-4_25
Zhang, C., Yang, X., & Tian, Y. (2013). Histogram of 3D Facets: A Characteristic Descriptor for Hang Gesture
Recognition. New York: IEEE. Recuperado el 16 de octubre de 2015, de http://ieeexplore.ieee.org/stamp/
stamp.jsp?tp=&arnumber=6553754