Gesture recognition using Kinect to detect unsafe behaviors performed by drivers

Main Article Content

Diana Esquivel González

Abstract

Vehicle drivers’ unsafe behaviors, like using a cellular phone while driving, is one of the leading
causes of traffic accidents worldwide. This unsafe practice is hard to regulate and control.
However, it is possible with the use of an automated gesture detection system that indicates a
dangerous behavior. The use of cameras with 3D depth sensors can aid in analyzing objects
and people in real time with high precision, identifying features and figures. These sensors use
a technology referred to as “point cloud”, which emits an array of laser lights and measures the
time of return (fly time) back to the sensor, determining the depth of each one of these points.
This technology permitted the development of a gesture recognition application that is capable
of automatically detecting the action that indicates that a driver is using a cellular phone while
driving. An initial functional simulation was developed using background subtraction, feature
analysis, and histogram analysis algorithms using the program V-Rep, which can detect the
gesture that would indicate this behavior. Furthermore, a prototype was implemented using real
images taken with the Kinect that were processed using Octave using the same algorithms used
for the simulation, thus supporting the effectiveness of the application.

Article Details

How to Cite
Esquivel González, D. . (2020). Gesture recognition using Kinect to detect unsafe behaviors performed by drivers. Tecnología En Marcha Journal, 33(7), Pág. 166–175. https://doi.org/10.18845/tm.v33i7.5491
Section
Artículo científico

References

Bouwmans, T., Porikli, F., Höferlin, B., & Vacavant, A. (2014). Background Modeling and Foreground Detection

for Video Surveillance. Chapman and Hall/CRC.

Cheung, S.-C. S., & Kamath, C. (2007). Robust techniques for background subtraction in urban traffic

video. Technical Paper, Center for Applied Scientific Computing, Lawrence Livermore National Laboratory,

California. Recuperado el 27 de setiembre de 2015, de https://computation.llnl.gov/casc/sapphire/pubs/UCRLCONF-200706.pdf

Dramanan. (2013). Background Subtraction. Recuperado el 27 de setiembre de 2015, de http://www.ics.uci.

edu/~dramanan/teaching/cs117_spring13/lec/bg.pdf

Murphy-Chutorian, E., Doshi, A., & Trivedi, M. M. (2007). Head Pose Estimation for Driver Assistance Systems:

A Robust Algorithm and Experimental Evaluation. Intelligent Transportation Systems Conference, 2007 (pp.

-714). IEEE. Recuperado el 22 de setiembre de 2015, de http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arn

umber=4357803&url=http%3A%2F%2Fieeexplore.ieee.org%2Fstamp%2Fstamp.jsp%3Ftp%3D%26arnumber

%3D4357803

Open CV. (n.d.). Open Source Computer Vision. Recuperado el 26 de setiembre de 2015, de How to Use

Background Subtraction Methods: http://docs.opencv.org/master/d1/dc5/tutorial_background_subtraction.

html#gsc.tab=0

Organización Mundial de la Salud. (2009). Informe sobre la situación mundial de la seguridad vial 2009.

Recuperado el 29 de agosto de 2015, de http://www.who.int/violence_injury_prevention/road_safety_status/

report/web_version_es.pdf?ua=1

Premaratne, P. (2014). Historical Development of Hand Gesture Recognition. En Human Computer Interaction

Using Hand Gestures (págs. 5-29). Singapore: Springer. doi:10.1007/978-981-4585-69-9_2

Vacavant, A., Chateu, T., Wilhelm, A., & Lequièvre, L. (2013). A benchmark dataset for outdoor foreground/background extraction. Computer Vision-ACCV 2012 Workshops, (págs. 291-300). Springer. doi:10.1007/978-3-

-37410-4_25

Zhang, C., Yang, X., & Tian, Y. (2013). Histogram of 3D Facets: A Characteristic Descriptor for Hang Gesture

Recognition. New York: IEEE. Recuperado el 16 de octubre de 2015, de http://ieeexplore.ieee.org/stamp/

stamp.jsp?tp=&arnumber=6553754