Quality prediction in molded door skin using data mining

Main Article Content

Fredy Humberto Troncoso-Espinosa
Karen Castro-Albornoz

Abstract

A door skin is a high-density wooden board and is the main component in the manufacture of doors. To ensure its commercialization, it must comply with demanding quality standards, the main one that measures the force necessary to detach the door skin from the structure of a door. Quality tests are carried out every two hours and the results are obtained after five hours. If the results show that the door skins are outside the required quality standard financial losses are generated during this waiting time. This research proposes the use of data mining using machine learning techniques to continuously predict this measure of door skin quality and reduce the economic losses associated with waiting for quality tests. For the use of data mining, a database was created using historical record of the variables of the production process and quality tests.  The methodology used is the discovery of knowledge in KDD databases (Knowledge Discovery in Databases).  The application of this methodology allowed identifying the main variables that affect the quality of the door skin and training four machine learning algorithms to predict the quality. The results show that the algorithm that best performance is Neural Net and allows to show that the implementation of the Neural Net algorithm will reduce the economic losses associated with waiting for the results of the quality tests.

Article Details

How to Cite
Troncoso-Espinosa, F. H., & Castro-Albornoz, K. (2021). Quality prediction in molded door skin using data mining. Tecnología En Marcha Journal, 35(1), Pág. 115–127. https://doi.org/10.18845/tm.v35i1.5395
Section
Artículo científico

References

H. Rostami, J.-Y. Dantan y L. Homri, «Review of data mining applications for quality assessment in manufacturing industry: support vector machines,» International Journal of Metrology and Quality Engineering, p. 401, 2015.

S. Thiede, A. Turetskyy, A. Kwade, S. Kara y C. Herrmann, «Data mining in battery production chains towards multi-criterial quality prediction,» CIRP Annals, pp. 463-466, 2019.

Masonite Chile S.A., «www.masonite.cl,» [En línea].

C. Salgado, «Procediminetos para ensayos físico-mecánicos,» Masonite Chile, Cabrero, VIII región, Chile, 2012.

J. R. Eleotério, M. T. Filho y G. B. Júnior, «Propriedades físicas e mecânicas de painéis MDF de diferentes massas específicas e teores de resina,» Ciência Florestal, pp. 75-90, 2000.

H. Poblete y R. Vargas, «Relacion entre densidad y propiedades de tableros HDF producidos por un proceso seco,» Maderas. Ciencia y tecnología, pp. 169-182, 2006.

G. Köksal, İ. Batmaz y M. C. Testik, «A review of data mining applications for quality improvement in manufacturing industry,» Expert systems with Applications, pp. 13448-13467, 2011.

D. Ribeiro, A. Sanfins y O. Belo, «Wastewater treatment plant performance prediction with support vector machines,» Industrial Conference on Data Mining, pp. 99-111, 2013.

X. Shi, P. Schillings y D. Boyd, «Applying artificial neural networks and virtual experimental design to quality improvement of two industrial processes,» International Journal of Production Research, pp. 101-118, 2004.

H.-Y. Tseng, «Welding parameters optimization for economic design using neural approximation and genetic algorithm,» The International Journal of Advanced Manufacturing Technology, pp. 897-901, 2006.

W.-C. Chen, A. H. Lee, W.-J. Deng y K.-Y. Liu, «The implementation of neural network for semiconductor PECVD process,» Expert Systems with Applications, pp. 1148-1153, 2007.

K. Agarwal y R. Shivpuri, «An on-line hierarchical decomposition based Bayesian model for quality prediction during hot strip rolling,» ISIJ international, pp. 1862-1871, 2012.

P. Austin, J. Tu, J. Ho, D. Levy y D. Lee, «Using methods from the data-mining and machine-learning literature for disease classification and prediction: a case study examining classification of heart failure subtypes,» Journal of clinical epidemiology, pp. 398-407, 2013.

U. Fayyad, G. Piatetsky-Shapiro, P. Smyth y R. Uthurusamy, Advances in knowledge discovery and data mining, American Association for Artificial Intelligence, 1996.

F. H. Troncoso Espinosa, P. G. Fuentes Figueroa y I. R. Belmar Arriagada, «Predicción de fraudes en el consumo de agua potable mediante el uso de minería de datos,» Universidad Ciencia y Tecnología, vol. 24, nº 104, pp. 58-66, 2020.

U. Fayyad, G. Piatetsky-Shapiro y P. Smyth, «The KDD process for extracting useful knowledge from volumes of data,» Communications of the ACM, pp. 27-34, 1996.

W. Frawley, G. Piatetsky-Shapiro y C. Matheus, «Knowledge discovery in databases: An overview,» AI magazine, pp. 57-57, 1992.

L. A. Calvo Valverde y J. A. Mena Arias, «Evaluación de distintas técnicas de representación de texto y medidas de distancia de texto usando KNN para clasificación de documentos.,» Tecnología en Marcha, vol. 33, nº 1, pp. 64-79, 2020.

L. A. Calvo Valverde y D. E. Alfaro Barboza, «Descubrimiento de reglas significativas mediante el uso de DTW basado en Interpolación Spline Cúbico.,» Tecnología en Marcha, vol. 33, nº 2, pp. 137-149, 2020.

F. H. Troncoso Espinosa, «Prediction of Recidivism in Thefts and Burglaries Using Machine Learning,» Indian Journal of Science and Technology, vol. 13, nº 6, pp. 696-711, 2020.

M. Kantardzic, Data mining: concepts, models, methods, and algorithms, John Wiley & Sons, 2011.

C. R. Morales, S. V. Soto y C. H. Martínez, «Estado actual de la aplicación de la minería de datos a los sistemas de enseñanza basada en web,» Actas del III Taller Nacional de Minería de Datos y Aprendizaje, TAMIDA2005, pp. 49-56, 2005.

C. Romero y S. Ventura, «Data mining in education,» Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, pp. 12-27, 2013.

J. Han, J. Pei y M. Kamber, Data mining: concepts and techniques, Elsevier, 2011.

D. Larose y C. Larose, Discovering knowledge in data: an introduction to data mining, John Wiley & Sons, 2014.

I.-C. Yeh y C.-h. Lien, «The comparisons of data mining techniques for the predictive accuracy of probability of default of credit card clients,» Expert Systems with Applications, pp. 2473-2480, 2009.

K. Lakshminarayan, S. Harp, R. Goldman y T. Samad, «Imputation of Missing Data Using Machine Learning Techniques,» KDD-96 Proceedings, pp. 140-145, 1996.

B. Nguyen Cong, J. L. Rivero Pérez y C. Morell, «Aprendizaje supervisado de funciones de distancia: estado del arte,» Revista Cubana de Ciencias Informáticas, pp. 14-28, 2015.

I. Guyon y A. Elisseeff, «An introduction to variable and feature selection,» Journal of machine learning research, pp. 1157-1182, 2003.

K. Polat y S. Güneş, «A new feature selection method on classification of medical datasets: Kernel F-score feature selection,» Expert Systems with Applications, pp. 10367-10373, 2009.

N. V. Chawla, K. W. Bowyer, L. O. Hall y W. Kegelmeyer, «SMOTE: Synthetic Minority Over-sampling Technique,» Journal of Artificial Inteligence Research 16, pp. 321-357, 2002.