Micro wind power generation in a Costa Rica’s forested area a case study
Main Article Content
Abstract
This work aims to describe a case study on the installation and energy assessment of a micro wind turbine as a renewable energy alternative. The system consisted of a horizontal axis wind turbine, five blades, and 3 kW. It was installed 18 meters above ground level in a forested area. A micro coffee producer was selected, and the theoretical energy generation at the site area was estimated. Subsequently, the turbine was installed, and its energy production is measured. A weather station was also installed to record the average monthly wind speed.
During the eight months that the study was conducted, it was obtained 225,76 kWh. According to theoretical models, it meant 37,75% less energy of the expected 598 kWh. It is concluded that the 3 kW wind turbine rated wind speed does not match the actual wind speed in the specific location. In addition, the prediction of the wind resource could be improved with on-site measurements.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación y pueda editarlo, reproducirlo, distribuirlo, exhibirlo y comunicarlo en el país y en el extranjero mediante medios impresos y electrónicos. Asimismo, asumen el compromiso sobre cualquier litigio o reclamación relacionada con derechos de propiedad intelectual, exonerando de responsabilidad a la Editorial Tecnológica de Costa Rica. Además, se establece que los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
References
[2] World Wind Energy Association, «WWEA released latest global small wind statistics,» 02 Junio 2017. [En línea]. Available: https://wwindea.org/blog/2017/06/02/wwea-released-latest-global-small-wind-statistics/. [Último acceso: 02 Diciembre 2019].
[3] G. Richmond-Navarro, G. Murillo-Zumbado, P. Casanova-Treto y J. F. Piedra-Segura, «Estado actual de la investigación sobre turbinas eólicas en Costa Rica,» Tecnología en Marcha, vol. 32, nº 2, pp. 54-67, 2019.
[4] J. Garza, «Costa Rica supera los 400 megavatios de capacidad eólica instalada,» La Reública, 16 Enero 2019. [En línea]. Available: https://www.larepublica.net/noticia/costa-rica-supera-los-400-megavatios-de-capacidad-eolica-instalada. [Último acceso: 01 Diciembre 2019].
[5] «Parque Eólico Cacao de Coopeguanacaste beneficiará a más de 20000 hogares guanacastecos,» Periódico Mensaje, 10 Enero 2019. [En línea]. Available: https://www.periodicomensaje.com/cantonales/3298-parque-eolico-cacao-de-coopeguanacaste-beneficiara-a-mas-de-20-000-hogares-guanacastecos. [Último acceso: 01 Diciembre 2019].
[6] «The Wind Power Wind Energy Market Intelligence,» [En línea]. Available: https://www.thewindpower.net/windfarm_es_27454_rio-naranjo.php. [Último acceso: 01 Diciembre 2019].
[7] International Electrotechnical Commission (IEC), «IEC 61400-2. Wind turbines – Part 2: Small wind turbines,» vol. 3, p. 278, 2013.
[8] Repretel, «Primeros postes de energía eólica se instalaron en Grecia,» 22 Noviembre 2018. [En línea]. Available: http://www.repretel.com/actualidad/primeros-postes-energia-eolica--instalaron--grecia-134489. [Último acceso: 01 Diciembre 2019].
[9] A. Tummala, R. K. Velamati, D. K. Sinha, V. Indraja y V. H. Krishna, «A review on small scale wind turbines,» Renewable and Sustainable Energy Reviews, vol. 56, pp. 1351-1371, 2016.
[10] W. M. Okita y K. A. Ismail, «Aerodynamic assessment of airfoils for use in small wind turbines,» Advances in Energy Research, 6(1), , vol. 6, nº 1, pp. 35-54, 2019.
[11] Z. Simic, J. G. Havelka y M. B. Vrhovcak, «Small wind turbines–A unique segment of the wind power market,» Renewable Energy, vol. 50, pp. 1027-1036, 2013.
[12] A. J. Bowen, N. Zakay y R. L. Ives, «The field performance of a remote 10 kW wind turbine,» Renewable energy, vol. 28, nº 1, pp. 13-33, 2003.
[13] A. Pourrajabian, M. Mirzaei, R. Ebrahimi y D. Wood, «Effect of air density on the performance of a small wind turbine blade: A case study in Iran,» Journal of Wind Engineering and Industrial Aerodynamics, vol. 126, pp. 1-10, 2014.
[14] L. Bilir, M. Imir, Y. Devrim y A. Albostan, «An investigation on wind energy potential and small scale wind turbine performance at İncek region–Ankara, Turkey,» Energy Conversion and Management, vol. 103, pp. 910-923, 2015.
[15] M. Bortolini, M. Gamberi, A. Graziani, R. Manzini y F. Pilati, «Performance and viability analysis of small wind turbines in the European Union,» Renewable Energy, vol. 62, pp. 629-639, 2014.
[16] NASA, «Atmospheric Science Data Center,» [En línea]. Available: https://eosweb.larc.nasa.gov. [Último acceso: 10 Junio 2014].
[17] M. O. Hansen, Aerodynamics of wind turbines., Routledge, 2015.
[18] Universidad de Magallanes, «Centro de Estudio de los Recursos Energéticos,» [En línea]. Available: http://www.cere-umag.cl/. [Último acceso: 10 Junio 2014].
[19] T. Burton, D. Sharpe, N. Jenkins y E. Bossanyi, Wind energy Handbook, England: John Wiley & Sons, 2001.
[20] K. O`neal Coto, «Energías limpias son viables en industria del café,» Oficina de Divulgación e Información, UCR., 10 Junio 2014. [En línea]. Available: https://www.ucr.ac.cr/noticias/2014/06/10/energias-limpias-son-viables-en-industria-del-cafe.html. [Último acceso: 02 Diciembre 2019].